NON-GRADED EXERCISES

TIME ALLOWING, ANSWERS WILL BE GIVEN ON THURSDAY SEP. 2ND OR TUESDAY SEP. 7TH. THERE IS NO RECITATION ON MONDAY SEP. 6TH.

Solve the following exercises from Rosen [1] Sec. 1.2, p. 26: Exercises 7, 8, 9, 10, 14, 15, 16, 21, 22, 23.

EASY EXERCISES OF PROPOSITIONAL CALCULUS

Exercise 1. Determine which of the following are propositions. Explain why.

- (1) Max is walking in the street.
- (2) All sidewalks are in the street.
- (3) Alice A, born on 1 of January 1900, with Social Security number 123 45 6789, is in New York.
- (4) $x \in \mathbb{N}$
- (5) 1 < 4
- (6) 4 < 1
- (7) All natural numbers are integers.
- (8) Some natural numbers are negative.
- (9) Which number is neither positive nor negative?
- (10) There exists a number that is neither positive nor negative.

Exercise 2. Let P, Q and R be propositions. Determine the *truth tables* of the following propositions.

- (1) $P \Longrightarrow Q$
- (2) $\neg P \lor Q$
- (3) $\neg P \lor Q \land (P \lor Q)$
- (4) $P \wedge Q \vee R$
- (5) $P \wedge (Q \vee R)$
- (6) $(P \wedge Q) \vee R$
- (7) $\neg Q \lor Q \land (P \lor Q)$
- (8) $(\neg Q \lor Q) \land (P \lor Q)$

Exercise 3. Determine which pairs of propositions of Exercise 2, if any, are *logically equivalent*.

Exercise 4. Determine which, if any, of the propositions of Exercise 2 are *tautologies*?

References

[1] K. H. Rosen. Discrete Mathematics and Its Applications. Mc Graw Hill, 5 edition, 2003.