WEEK 9: CS275 RECITATION EXERCISES

For each question, read **each word** with the greatest care and **without hurrying**. If you have doubts about what is asked, **go back** to the wording of the question until the meaning of the question is clear. Then try to find an answer.

Exercise 1. P. 319, n. 4 in [1], Section 4.2. A bowl contains ten red balls and ten blue balls. A woman selects balls at random without looking at them.

- a) How many balls must she select to be sure of having at least three balls of the same color? **Solution:** 5. Pigeonhole principle guarantees that 3 or more will have same color. Let x_1, x_2 be the number of red and blue balls. $x_1 + x_2 = 5 \Longrightarrow x_1 \ge 2.5 \lor x_2 \ge 2.5$.
- b) How many balls must she select to be sure of having at least three blue balls? Solution: 13. I can pick 10 red and 2 blue balls, w/out reaching 3 blue balls. With $x_i \in \{1...10\}$, one has $x_1 + x_2 \ge 13 \Longrightarrow x_2 \ge 13 x_1 \ge 3$.

Exercise 2. P. 319, n.6 in [1], Section 4.2.

a) Let d be a positive integer. Show that among any group of d+1 (not necessarily consecutive) integers, there are two with exactly the same remainder when they are divided by d. Solution: Let x_i , $1 \le i \le d$ be the number of integers y in the group, s.t. $y \mod d = i - 1$. If $x_1 + \ldots + x_d \ge d + 1$, then $\exists i, x_i \ge (d+1)/d > 1$.

Exercise 3. P. 319, n. 12 in [1], Section 4.2. How many ordered pairs of integers (a, b) are needed to guarantee that there are two ordered pairs (a_1, b_1) and (a_2, b_2) such that $a_1 \mod 5 = a_2 \mod 5$ and $b_1 \mod 5 = b_2 \mod 5$?

Solution: 26. Note that $((a_1 - a_2) \mod 5, (b_1 - b_2) \mod 5)$ may take 25 possible values $m_1 = (0, 0), \ldots, m_5 = (0, 4), \ldots, m_{25} = (4, 4)$. Let x_i be the number of pairs s.t. $((a_1 - a_2) \mod 5, (b_1 - b_2) \mod 5) = m_i$. Etc...

Exercise 4. P. 319, n. 14 in [1], Section 4.2.

- a) Show that if seven [distinct] integers are selected from the first 10 positive integers, there must be at least two pairs of these integers with the sum 11. Solution: Let $A_1 = \{1, 10\}$, $A_2 = \{2, 9\}$, $A_3 = \{3, 8\}$, $A_4 = \{4, 7\}$, $A_5 = \{5, 6\}$ and let x_i be the number of integers (out of the seven) that belong to A_i . Since $x_1 + \ldots + x_5 = 7 = 5 + 2$, either two of the x_i are equal to 2, or one of the x_i is equal to 3. In both cases, one can find two pairs of integers that sum up to 11.
- b) Is the conclusion of part a) true if six integers are selected rather than seven? Solution: No. Only one pair can be found.

Exercise 5. P. 320, n. 40 in [1], Section 4.2. There are 51 houses on a street. Each house has an address between 1000 and 1099, inclusive. Show that at least two houses have addresses that are consecutive integers.

Solution: By contradiction. Let n_1, \ldots, n_{51} be the sorted house address numbers. If no two numbers are consecutive, then $n_{i+1} \ge n_i + 2$ for all $1 \le i < 51$. Thus, $n_{51} \ge 1000 + 2 + \ldots + 2 = 1100$.

$$a \operatorname{mod} b = a - b \left\lfloor \frac{a}{b} \right\rfloor \in [0, b).$$

¹The modulo of a by b, also pronounced "a modulo b" is defined by:

Exercise 6. P. 707, n. 2 in [1], Section 10.1. Find the values, if any, of the Boolean variable x that satisfies these equations.

- a) $x \cdot 1 = 00$.
- **b)** x + x = 00.
- c) $x \cdot 1 = x0, 1.$
- **d**) $x \cdot \bar{x} = 1$ None.

Exercise 7. P. 708, n. 7 in [1], Section 10.1. What values of the Boolean variables x and y satisfy xy = x + y?

Solution: (x,y)=(0,0) and (x,y)=(1,1), as seen from the table

Exercise 8. P. 708, n. 26 in [1], Section 10.1. Find the duals of these Boolean expressions.

- a) x+y..... $x\cdot y$
- **b**) $\bar{x}\bar{y}$ $\bar{x}+\bar{y}$
- c) $xyz + \bar{x}\bar{y}\bar{z} \dots (x+y+z) \cdot (\bar{x}+\bar{y}+\bar{z})$
- **d)** $x\bar{z} + x \cdot 0 + \bar{x} \cdot 1 \dots (x + \bar{z}) \cdot (x + 1) \cdot (\bar{x} + 0) = (x + \bar{z}) \cdot \bar{x} = \bar{z} \cdot \bar{x}$

Exercise 9. For each of the Boolean functions below,

- a) rewrite it in a simpler way, if this is possible;
- b) find its sum-of-products expansion, and
- c) find its product of sums expansion.

Solution:

- **a)** $F(x,y) = x + y\bar{x}$
 - 1) No simplification.
 - 2) $xy + x\bar{y} + \bar{x}y$
 - 3) $\bar{x} + \bar{y}$
- **b)** $F(x, y, z) = \bar{x}y + \bar{y}z + \bar{z}x$
 - 1) No simplification, or perhaps $(\bar{x}+\bar{y}+\bar{z})\cdot(x+y+z)$.
 - 2) $\bar{x}\bar{y}z + \bar{x}y\bar{z} + \bar{x}yz + x\bar{y}\bar{z} + x\bar{y}z + xy\bar{z}$
 - 3) $(\bar{x} + \bar{y} + \bar{z}) \cdot (x + y + z)$
- c) $F(x, y, z) = \bar{x}(yz + \bar{y}\bar{z}) + x(y\bar{z} + \bar{y}z)$
 - 1) No simplification, or perhaps $\bar{x}\bar{y}\bar{z} + \bar{x}yz + xy\bar{z} + x\bar{y}z$.
 - 2) $\bar{x}\bar{y}\bar{z} + \bar{x}yz + xy\bar{z} + x\bar{y}z$.
 - 3) $(x + y + \bar{z}) \cdot (x + \bar{y} + z) \cdot (\bar{x} + y + z) \cdot (\bar{x} + \bar{y} + \bar{z})$.
- **d)** $F(x, y, z) = \bar{x}(y+z) + \bar{y}(x+z) + \bar{z}(x+y)$
 - 1) $(\bar{x}\bar{y}\bar{z} + xyz)$.
 - 2) $\bar{x}\bar{y}z + \bar{x}y\bar{z} + x\bar{y}\bar{z} + xy\bar{z} + x\bar{y}z + \bar{x}yz$.
 - 3) $(x + y + z) \cdot (\bar{x} + \bar{y} + \bar{z})$.

References

[1] K. H. Rosen. Discrete Mathematics and Its Applications. Mc Graw Hill, 5 edition, 2003.