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Abstract
Today, video surveillance is commonly used in security sys-
tems, but requires more intelligent and more robust techni-
cal approaches. Such systems, used in airports, train sta-
tions or other public spaces, can bring security to a higher
level. In this context, we present a simple and accurate
method to detect left luggage in a public area, which is ob-
served by a multi-camera system and involving multiple ac-
tors. We first detect moving objects by background subtrac-
tion. Then, the information is merged in the ground plane of
the public space floor. This allows us to alleviate the prob-
lem of occlusions, and renders trivial the image-to-world
coordinate transformation. Finally, a heuristic is used to
track all objects and detect luggage items left by their own-
ers. An alarm is triggered when the person moves too far
away from his luggage during a too long period of time. Ex-
perimental results prove the efficiency of our algorithm on
PETS 2006 benchmark data.

1. Introduction
Faced with the increasing need of security in public spaces,
public and commercial interest pushes research to develop
active prevention solutions, capable of detecting suspicious
events while they occur, rather than just recording them.
For example, iOmniscient [4] claims to provide intelli-
gent video surveillance software that detects objects left
in crowded or busy areas, using a Non-Motion Detection
(NMD) technique.

Surveillance applications developed nowadays are part
of third generation surveillance systems [12], that cover a
wide area using a multi-camera network. Typical watched
areas are sensitive public places and infrastructures, that are
susceptible of being crowded. Tracking people in a crowded
environment is a big challenge, since, in image space, we
must deal with merging, splitting, entering, leaving and cor-
respondence. The problem is more complicated when the
environment is observed by multiple cameras. To deal with
this, approaches have been proposed which can be classified
in two categories : uncalibrated and calibrated.

An interesting example of the uncalibrated method is
proposed by Khan and Shah [5]. They take advantage of
the lines delimiting the field of view of each camera, which
they called Edges of Field of View. Similarly, Calderara et
al. [1] introduce the concept of Entry Edges of Field of View
to deal with false correspondences.

Among calibrated methods, we can cite the work of Yue
et al. [13] who use homographies to solve occlusions. A
second method is proposed by Mittal and Davis [7] which
is based on epipolar lines.

The advantage of having calibrated cameras is that it
greatly facilitates the fusion of visual information produced
by many cameras.

A partial calibration, in which only camera-to-ground-
plane homographies are known, is often used. Indeed, ho-
mographies are much easier to obtain than general cali-
bration, while still providing a very useful image-to-world
mapping.

In this paper, we will present an algorithm to detect aban-
doned luggage in a real world public environment. This is
a typical challenge of nowadays surveillance systems. For
testing purposes, we will use the PETS1 datasets [10], de-
scribed below in section 2, that provides multi-camera se-
quences containing left-luggage scenarios. We will exploit
the fact that the PETS datasets provides calibration and suf-
ficient data to estimate homographies.

The method we developed here is similar to the tech-
nique recently proposed by Khan and Shah [6]. They
present a planar homography constraint to resolve occlu-
sions and detect the locations of people on the ground plane
corresponding to their feet.

Our video surveillance process is described in Figure 1.
First, we perform a background subtraction in the image
plane of each camera (see Section 3.1). Then, a homo-
graphic transformation is performed to merge information
from all cameras in the scene floor homographic image (see
Section 3.2). Finally, we work in the homographic image
to track people using a heuristic method to detect suspect
events (see Section 3.3).
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Figure 1: Scheme of the proposed algorithm.

Our main contribution is to present results obtained by
a simple modular system. Its principal merit is that it has
few parameters, most of them being easily identified phys-
ical quantities (e.g. minimum detected object size). In the
technical description below, and in the conclusion, we will
discuss principled ways of reducing even further the num-
ber of parameters.

2. Datasets
To test our algorithm, we used the datasets provided by
the PETS 2006 workshop organization. These videos were
taken in a real world public setting, a railway station,
and made possible by the support and collaboration of the
British Transport Police and Network Rail. There is a to-
tal of seven multi-camera sequences containing left-luggage
scenarios with increasing scene complexity. Luggage items
are of several different types (briefcase, suitcase, rucksack,
backpack and even a ski gear carrier). Briefly stated, in the
context of PETS 2006, a luggage has been left abandoned
if the owner is farther than a given distance from the lug-
gage (300cm) for a certain period of time (30 seconds). For
these benchmark videos, calibration data for each individ-
ual camera are given and were computed from specific point
locations (also given) taken from the geometric patterns on
the floor of the station. Ground-truth information such as
luggage locations and abandoned-luggage detection times
are provided with each datasets. The scenarios involve up
to 6 persons with a left-luggage occurrence in each one of
them. They were filmed with four DV cameras with PAL
standard resolution of 768 x 576 pixels and 25 frames per
second.

3. Method
3.1. Motion Detection
Moving visual objects are segmented using a typical simple
background subtraction with shadow removing. We con-
struct the background image and classify as foreground any
pixel that deviates from it by more than a certain threshold.
This threshold is set so that at most ∼ 1 % of background

pixels are misclassified.
Automatic background model estimation techniques

could have been used, but in the present work, a simple
semi-automatic method was sufficient.

The background model consists of the median value
Cmed of each color component, for each pixel. The me-
dian is computed from ten images taken one second apart at
the beginning of the sequence.

We now explain how the threshold is set. We consider
the residues of RGB color components with respect to the
background (the median) and the threshold is set so that 1 %
of the background pixels are misclassified.

Figure 2: Values of the residues computed as in Eq. 1.

Figure 2 shows the residues computed from the ten im-
ages in one of the provided sequences. In the abscissa is the
value: ∑N

n=1 |Cn (i, j)− Cmed (i, j)|
N

, (1)

where (i, j) is the pixel coordinate, and N the number of
images (N=10 in our case).

The general shape of the histogram varies little from
camera to camera, and sequence to sequence. A thresh-
old of 15 gray levels is appropriate for all sequences and
cameras, and used everywhere in this work. Potential fore-
ground pixels are thus those that verify:

|I (i, j)− Cmed (i, j)| ≥ 15.

To obtain the final foreground silhouettes, shadows must
be removed. For this purpose, the pixels with a reasonable



darkening level and a weak chromatic distortion [2], below
a certain threshold, considered as shadow, are therefore ig-
nored. Isolated spurious pixels are removed by a single ero-
sion operation. We then perform 5 dilations with a 3x3 ker-
nel. We will justify this dilation step in the Section 3.2.1.

Once the silhouette binary images are obtained, we are
ready to fuse them in the floor homographic plane or or-
thoimage.

3.2. Information Fusion in the Orthoimage
To obtain coherence information from the different views,
we work in the ground orthoimage obtained with homo-
graphic transformations. This allows us to overcome the
problem of occlusions. Indeed, this orthoimage provides
a birds-eye view of the ground plane with information on
moving objects in contact with the floor.

3.2.1 Homographic transformation

We use PETS 2006 benchmark data which provides corre-
sponding points on the floor in each field of view of the
camera. Two methods could be used to remap the images
to the ground plane (i.e. build orthoimages). The first is to
use the camera calibration parameters provided in the PETS
dataset (computed with the Tsai algorithm [11]). The sec-
ond method is to compute just the homographic transforma-
tions from that maps corresponding points from the image
plane to the ground plane. The homographic matrix is a 3x3
matrix and the homographic transformation is: x1

y1

1

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 .

 x2

y2

1


with (x1, y1) and (x2, y2) a pair of corresponding points.

Using at least four pairs of corresponding points, we
are able to compute the homographic matrix using a least-
squares method. Since more than four pairs are provided,
we use the linear (non-optimal) least-squares estimation
method.

Figure 3 shows an example of the result obtained for the
two methods for one of the cameras. We notice that the pro-
vided Tsai calibration parameters yield a less good orthoim-
age: apparently the radial distortion correction goes wrong
(Figure 3 (a)). In comparison, the homographic transforma-
tion computed from the provided point correspondences is
relatively free of distortion, so we decided to use only the
homographic transformations.

After that, each silhouette binary image is transformed
to the orthographic plane using the corresponding homo-
graphic matrix. The fusion in the orthoimage is made by
adding the pixel values of all four images. In the resulting

(a)

(b)

Figure 3: The birds-eye view obtained with (a) the Tsai
camera model and from (b) homographic transformation es-
timated from the PETS corresponding points. These views
correspond to camera #1.

birds-eye view image, Figure 4 (e), the intersection of each
person’s silhouette is at the level of the feet.

Figure 5 shows the fusion without silhouette dilatation.
We observe that there is a mapping error since the foot in
each camera are not exactly overlapping after fusion in the
floor homographic plane. This error is about 5-10 pixels and
is mostly due to camera optical distortion that was not taken
into account in our methodology. This is why, to overcome
this problem and keep the algorithm as simple as possible,
we decided to perform five silhouette dilatations to improve
foot overlapping. Another advantage of dilatation is that
it ensures the fusion of each foot blob into a unique more
stable blob representing the person.

Figure 5: Mapping error in the orthoimage.

3.2.2 Extraction of the blobs

The orthographic image is used to detect the objects that
touch the ground. In order to extract the corresponding
blobs, we use the information of the overlapping field of



Figure 4: Silhouette extraction and fusion in the orthographic plane for frame #389 sequence 3 of the PETS 2006 dataset. (a)
Original images, (b)(c) extracted silhouettes, (d) silhouette mappings and (e) silhouette fusion in the homographic plane.

view of the cameras (Figure 6). For instance, in a four-
camera field of view (white area), the threshold for blob
detection is set to three. This means that an overlapping of
at least three silhouettes is necessary to create blobs: blobs
can be detected in the white or light gray area of Figure 6.

3.3. Heuristic Event Recognition
Once the segmentation and blob labeling are performed in
the orthoimages, only blob centroid positions (x,y), number
of blob pixels Npix and bounding boxes are passed to the
event detection heuristic. The event detection heuristic has
three main components:

1. Tracking of blobs from frame to frame, thus forming
spatio-temporal entities.

2. Detection of spatio-temporal forks.

3. Detection of immobile blobs.
Based on the output of these components, a warning is

raised when a fork has been detected and one branch (the
“luggage” or “immobile object”) is immobile, while another
branch (the “owner”) is more than b = 300 cm away. An
alarm is raised when, in addition, the owner of the immobile
object stays at a distance greater than b during 30 seconds.
These are the definitions used in our results reported below.

We now describe each of the components in detail.

3.3.1 Tracking

For the purpose of tracking, we model blobs as circles of
radius ρ =

√
Npix/π, where Npix is the known number of

pixels in the blob. Two blobs are said to touch if their circles
intersect, that is, if ‖ (x1, y1)− (x2, y2) ‖2 ≤ (ρ1 + ρ2)



Figure 6: Original images and their homographic transfor-
mations, and the overlapping fields of view of all cameras.

where (x1, y1), (x2, y2) are the blob centroid positions, and
ρ1, ρ2 are their radii.

If two blobs in consecutive frames touch, then they will
be said to pertain to the same spatio-temporal entity (Fig-
ure 7).

We record the history of each entity, so that, when two
distinct entities touch the same blob in a new frame, that
blob will be said to pertain to the entity that has the largest
number of previous blobs (Figure 8).

Figure 12 shows all the detected blobs, each colored ac-
cording to its given label. Note that, with our definition of
tracking, two blobs, in the same frame, that do not touch,
may still pertain to the same entity (Figure 9).

3.3.2 Detection of spatio-temporal forks

Spatio-temporal forks correspond to objects that separate
after having been in contact. Recognizing such patterns
is fundamental to detect abandoned objects. A (possibly
multi-pronged) fork is said to occur whenever two blobs
that do not touch pertain to the same entity. In particular,
we are interested in detecting forks in which one branch
moves away, while the other remains immobile.

Figure 7: Tracking: blobs At+1 and At, observed at times
t + 1 and t are considered to pertain to the same spatio-
temporal entity, because they intersect in the orthoimage.

Figure 8: Merging of spatio-temporal entities: when two
spatio-temporal entities A and B meet, only the label of the
one with most previous blobs is kept.

3.3.3 Detection of immobile objects

Ideally, an immobile object would be characterized by a
foreground blob that remains constant in time. In practice,
blobs are subject to misdetections, spurious detections and
poor localization.

We represent an immobile object as a ground position
such that there exists a blob at less than 30cm in each frame,
during more than 3 seconds. The immobile object exists as
long as there is a blob at less than 30cm from its position.
The position yt of the immobile object (after t frames of
existence) is defined as the mean of the closest blobs, at
each frame:

yt =
t∑

s=1

xs,

where xs is the blob, amongst all blobs x detected in frame

s, that is closest to ys: xs = arg min
x

|x− ys|.

The distance of 30 cm corresponds to the uncertainty in
the localization of the blob centroid. It has been chosen
by examining the distribution of distances of blobs around
potential immobile objects. The 3 second delay serves only
to limit the number of potential immobile objects. Also, the
position of a newly-abandoned object is unstable, due to the
proximity of the owner. The 3 second delay also gives time
for the object position to stabilize. Figures 10 and 11 further



Figure 9: Forking, or branching, of spatio-temporal entities:
blobs that are not connected may pertain to the same spatio-
temporal entity, as a result of a fork

justify the choice of these quantities. Figure 10 shows the
localizations of all detected blobs.

The local maximum of blob density would be the “ideal
position” of the detected blob. The ground-truth position
of the luggage (given in the PETS dataset), identified by a
cross in the zoomed image, is slightly aside the maximum
due to imprecision in the orthoimage construction.

Although the local maximum appears well localized,
there are frames in which no blob is in fact detected. In
these frames the blob nearest to the object is much farther.
These frames form spikes in Figure 11, which shows the
distance between the ideal position (maximum density) and
nearest detected blob, in Sequences 1 and 5. Given the am-
plitude of the spikes in this last sequence, a distance of 30
pixels is a safe choice.

We now explain how the three components above are
combined to detect left luggage. At each time frame, we
identify forks in which one branch is immobile and another
(the “owner”) is more than b = 300 cm away from the
immobile branch. In such forks, we raise a warning and
change the entity label of the owner, to be able to iden-
tify it later. If the luggage remains in place for 30 sec-
onds, during which time the owner does not move closer
than b = 300 cm from the luggage, then the object will be
considered to be abandoned, and an alarm is raised.

4. Results
In this section, we report our results on all seven PETS
datasets. Two sets of results are given, one without the
shadow suppression method, the other with shadow sup-
pression. All parameters are otherwise exactly the same in
all reported results.

An important information in video surveillance is the
computation time. The pixel treatment is compiled in C++
with the OpenCV library [9], and the tracking runs under the
Octave software [8]. On a Centrino, 2.26 GHz, the image
treatment takes about 0.4 s per frame for 1200x400 homo-
graphic images. The tracking of objects with Octave takes
0.02 seconds per frame on a 1.4 GHz Celeron M.

Density of blob occurrences PETS 2006 in Sequence 1

Zoom around the true abandoned object position (cross)

Figure 10: Density of blob occurrences in Sequence 1. The
gray level represents the number of blobs detected at that
pixel during the sequence. Top: Complete surveilled area;
note the high density near the top, corresponding to the
object, with the streaks left by the object carrier coming
and going. Bottom: Zoom around the true object (location,
marked with a cross), and the nearby local maximum of the
number of detected blobs (dark mass).

Spatial Temporal Subjective
Seq. TP FP error for error for difficulty

TP (cm) TP (s)
1 1 0 25.8 +0.1 *
2 1 0 16.9 +2.5 ***
3 0 0 - - *
4 1 0 63.9 +1.7 ****
5 1 13 43.8 +0.2 **
6 1 0 43.9 +12.2 ***
7 1 3 59.3 +0.5 *****

Table 1: Left-luggage detection without shadow removal.
TP : True Positive (correct detection), FP : False Positive
(incorrect detection). * : very easy, ***** : very difficult.

Tables 1 and 2 show the results of our algorithm on the
seven datasets given by the PETS workshop organization.
As expected the errors are usually larger when the shadows
are not removed. Figure 13 shows the results in 3D: Warn-
ings and alarms are represented by yellow and red spheres,
respectively. Considering the simplicity of our methodol-
ogy, the results are very satisfactory.



Blob occurrences in Sequence 1

Blob occurrences in Sequence 1

Figure 11: Distance, in cm, between local maximum of blob
density and nearest blob, for the time interval during which
the object is present there. The spikes in these curves jus-
tify a tolerance of 30cm during the localization of immobile
objects.

Spatial Temporal Subjective
Seq. TP FP error for error for difficulty

TP (cm) TP (s)
1 1 0 11.8 +0.0 *
2 1 0 15.6 +0.2 ***
3 0 0 - - *
4 1 0 37.7 +1.0 ****
5 1 5 48.4 +0.2 **
6 1 0 10.3 +2.3 ***
7 1 0 70.9 +0.7 *****

Table 2: Left-luggage detection with shadow removal. TP :
True Positive (correct detection), FP : False Positive (incor-
rect detection). * : very easy, ***** : very difficult.

5. Conclusion
The proposed algorithm has the important advantage of be-
ing very simple. It has few parameters and we have shown
how to set these parameters based on the input data.

As a consequence of its simplicity, our algorithm has
some limitations. For instance, the tracking algorithm ex-
ploits the fact that the motions of the blobs of interest is typ-
ically small with regard to the blobs’ spatial extents. This
allows simple correspondence of blobs by means of bound-
ing circles. However, if the motion becomes larger, this
simple tracking methodology will fail and more complex
motion description or prediction will be necessary. Another

Sequence 1

Sequence 2 Sequence 3

Sequence 4 Sequence 5

Sequence 6 Sequence 7

Figure 12: Spatio-temporal entities, identified by the heuris-
tic of Section 3.3.1. Each entity is given a distinct color.
Here, each blob is represented by its rectangular bounding
box. One may identify some individual trajectories by a
single color, while others are merged into a single entity.

weakness of the tracking algorithm is the somewhat limited
supervision of the temporal evolution of the blobs. For in-
stance when two blobs merge and, after a while, split again
into two blobs, there is no way in the proposed algorithm to
identify each one of them (or to make the correspondence
between the blobs before and after the merging). For in-



Sequence 1

Sequence 2 Sequence 3

Sequence 4 Sequence 5

Sequence 6 Sequence 7

Figure 13: 3D visualization of the blobs and events detected
in each of the seven sequences. These results are from the
experiment reported in Table 2. Here, each blob is repre-
sented by a single colored point, while warnings and alarms
are represented by yellow and red spheres, respectively.

stance, this could be a problem if the owner of a luggage
meets another person forming a unique blob. After a few
moments, if the owner leaves the scene, the algorithm will
not be able to identify the leaving blob (the owner or the vis-
itor?). Blob correspondence could be implemented based
on the color histogram of the individual blobs (and corre-

sponding silhouettes) before their grouping; this would al-
low the determination of the corresponding persons after an
eventual future splitting but at the price of a more complex
algorithm.
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