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Abstract

We consider reconstruction algorithms using points tracked over a sequence of (at least three) images, to estimate the positions of the
cameras (motionparameters), the 3D coordinates (structureparameters), and the calibration matrix of the cameras (calibration parameters).
Many algorithms have been reported in literature, and there is a need to know how well they may perform. We show how the choice of
assumptions on the camera intrinsic parameters (either fixed, or with a probabilistic prior) influences the precision of the estimator. We
associate a Maximum Likelihood estimator to each type of assumptions, and derive analytically their covariance matrices, independently of
any specific implementation. We verify that the obtained covariance matrices are realistic, and compare the relative performance of each type
of estimator.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of 3D reconstruction from images has drawn
considerable attention. We focus on the problem of recon-
struction frommatched points(corners). The parameters of
interest are thestructure parameters, i.e. the 3D coordinates
of the points, themotion parametersthat describe the
positions of the cameras; and thecalibration parameters
that describe the intrinsic characteristics of the used sensors.
The case of known intrinsic parameters has been thoroughly
studied in photogrammetry [1]. Work on uncalibrated
reconstruction progressed dramatically in recent years
with the works of Hartley [2], Faugeras [3], Maybank [4],
Pollefeys et al. [5], who showed how to obtain projective,
affine, and, finally, euclidean reconstructions from uncali-
brated views. We are interested in euclidean reconstruction.
Many algorithms have been proposed, differing, e.g. on the
assumptions concerning the calibration parameters and/or
motion [6]. Studies of the precision of the estimation of
the “fundamental matrix” [7] and “trifocal tensor” [8],
which represent multilinear constraints that tracked 2D
features must verify can be found in Refs. [9–11]. A
study of critical (pathological) cases for self-calibration
can be found in Ref. [12], and the achievable precision in
the calibrated case is addressed in Ref. [13].

In this paper, we study the precision with which 3D
points, camera orientation, position and calibration are
estimated. In some studies [14,15] some intrinsic para-
meters are fixed to nominal values. We want to compare,
in terms of precision, the effect of these assumptions and the
precision achieved in the calibrated case. One contribution
of this paper is to compare the precisions of calibrated and
uncalibrated reconstruction. Although the former always
performs better, experimentation shows that when more
than ten images are available uncalibrated reconstruction
performs honorably.

Errors in the localization of image features introduce
errors in the reconstruction. Some algorithms are numeri-
cally unstable, intrinsically, or in conjunction to particular
setups of points and/or of cameras. However, an in-depth
study of the precision of these algorithms has not been
presented. The issue of the accuracy of uncalibrated recon-
struction has been raised and studied repeatedly, but always
associated to a particular algorithm. Our aim is to give a
more general treatment to the question, while remaining as
independent as possible of any particular implementation.

1.1. Scope of the paper

Most algorithms combine an “algebraic” part, and an
optimization part that solves for a Maximum Likelihood
[2] (or related [16]) estimate. Maximum Likelihood (ML)
and related estimators are often reported [16] to converge to
the solution only if started close from it. It is the purpose of
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the “algebraic” algorithm to provide the starting position. In
this paper, we study the precision of the ML-like estimator,
not that of the algebraic algorithm. The true parameters are
considered as random variables with a distribution that is
defined from the observations. The estimator is defined by
the observation model, independently from any specific
algorithm; we derive analytically its covariance matrix in
various cases of interest: we distinguish the cases in which
only the observations are available (ML estimation) and
those where some knowledge of the estimated quantities
is available a priori. Amongst the later, we further
distinguish the cases of probabilistic knowledge (maximum
a posteriori estimation), and that of “exact” knowledge,
where some parameters are fixed.

When estimating all parameters from only the obser-
vations, the estimation is often numerically ill posed. For
example, in Ref. [14] some intrinsic parameters are highly
correlated with some of the motion parameters, and the
focal length is correlated to the depth (cinema uses the
fact that zooming is almost indistinguishable from forward
motion).

If some calibration parameters are fixed, they may be
removed from the estimated vector. This simplifies the
study and implementation of the estimator, and—presum-
ably—ameliorate the numerical stability. Typical assump-
tions are that pixels are rectangular or square, or that the
principal point coincides with the image center [5,15]. We
verify in Section 5.1 the effect on precision of fixing the
intrinsic parameters, either to values obtained from a pre-
calibration step or to nominal values (corresponding to
square pixels and centered principal point).

Finally, the likelihood function may be modified to take
into account a priori knowledge expressed probabilistically,
e.g. assuming that structure or calibration follow a known
distribution. One then performsmaximum a posteriori

(MAP) estimation. A prior on structure serves most often
to retrieve precisely the intrinsic parameters, and is then
calledcalibration from a known object.

A prior on the calibration parameters, may come either
from a previous calibration step, or from assuming that
the camera parameters follow a “nominal” distribution,
e.g. the expected value of the principal point is the center
of the image, and that its standard deviation is approxi-
mately 10% of the image size.1 This is the probabilistic
counterpart of fixing the principal point to image center,
in Section 2.2. In terms of the theoretical precision, priors
are preferable to fixed parameters.

We will write analytically the covariance matrices corre-
sponding to the studied cases in Eqs. (16)–(18). The
diagonal terms correspond to the variances of the individual
estimated parameters. The validity of our analytical expres-
sions is verified by comparing the theoretical and the
observed behavior of a reconstruction algorithm, in Section
5.1. One important contribution of this paper lies in showing
how big the variances of the considered estimators are in
practice.

2. The estimation problem

2.1. Notations

We now define the notations used throughout the paper.
We consider that a set ofP points has been tracked over a
sequence ofN images. The following notation is adopted:

• p [ {1 ; 2;…;P} and n [ {1 ; 2;…;N} are the indices
used for numbering points and images, respectively.

• xp [ R3 is the vector of the coordinates, in the world
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Fig. 1. Histogram of scaled errors of the ML estimator. In abscissa is the error, divided by the theoretical standard deviation. The Gaussian density function is
superposed for comparison. The observed variance is 1.02, while parametersX, W, T andK have variances in [0.98,1.09].

1 Lenz and Tsai [18] cite values of this order of magnitude.



frame, of thepth point. Its components arei [ {1 ; 2;3} :
The symbolX shall denote the 3D coordinates of all the
pointsx1;…; xP:

The projection of these 3D points in the image depends on
the relative orientation and position of the camera. Let

• An � �an1an2an3�T be the rotation matrix relating world
coordinates to coordinates innth image frame. It can be
uniquely defined by three parameterswn. W will repre-
sent the orientation of all the camera frames,w1;…;wN:

• Tn be the coordinates of the world frame origin,
expressed in thenth camera frame.T will represent
the positions of all the coordinatesT1…Tn:

Assuming that the camera has unit focal length, square
pixels and a centered principal point, thepth pint xp,
produces the (noiseless) observations~unp � �~unp1; ~unp2�:

~unpk�
ank·xp 1 tnk

an3·xp 1 tn3
k [ {1 ; 2} �1�

taking into account the intrinsic parameters and noise
yields:

unp � B ~unp 1 C 1 enp �2�
with

• B � �b1;b2�T the 2× 2 matrix that models the skew,
pixel size and camera focal length.

• C � �c1; c2�T the pixel coordinate of the principal point.
• enp � �enp1; enp2�T the observation noise, which is

assumed to have Gaussian, independent and identically
distributed terms, with known variances 2.

Let U denote all the observationsunpk, for k [ {1 ;2} ; p [
{1…P} and n [ {1…N} ; and Up � U 2 e the noiseless
observations. The intrinsic parameters,B and C, will be
noted K . An asterisk denotes the true values of the
parameters,Xp, Wp, Tp and K p. The problem is defined
as estimating the structure, camera orientation and position,
and intrinsic parameters, from the observationsU. We write
as a single vector, all the parameters:Q � �X;W;T;K�:
For a givenQ , thepredictionof the (n,p,k)th observation is
defined as:

vnpk�Q� � bk ~unp�Q�1 ck where ~unpk�Q� �
ank·xp 1 tnk

an3·xp 1 tn3

�3�

2.2. Maximum likelihood estimator

With the observation model defined in Eq. (2), the prob-
ability density of observingunp, for a parameter vectorQ is

P�unpuQ� � 1
2ps 2 e2ivnp�Q�2unpi2

=2s 2

and the conditional probability of observingU given the
parametersQ , is P�UuQ� � PnpP�unp;Q�: The maximum

likelihood (ML) estimator is defined as the function that
associates to the observationsU, the parameterQ̂ that
maximizes P(UuQ ), or, equivalently, which minimizes
Q�U;Q� � 2log�P�UuQ��: The functionQ has the more
convenient form:

Q�U;Q� �
X
npk

1
2s 2 �unpk 2 vnpk�Q ��2 1 Constant �4�

wheren ranges from 1 toN, p ranges from 1 toP and k
ranges from 1 to 2; these ranges are used for all subsequent
sums and products overn,p andk.

In our case, this function doesnot have a unique
minimum: it is well known that the reconstruction is defined
only up to a similarity transformation. A way of resolving
the ambiguity is to constrain the structure parameters to be
centered�Spxp � 03� and have unit mean norm�Spixpi2 �
3P�; the camera matrixB to be lower triangular, and the first
camera frame to coincide with the world frame�A1 � I3�:
The restricted parameter set is defined as the zeros of the
function:

S�Q� �
X

p

ixpi2
2 3P;

X
p

xp1;
X

p

xp2;
X
p

xp3; a12; a13; a23

24 35T

�5�

There are still some critical setups yielding a continuum of
ML estimates, even within the setS21({04}). Uniqueness
conditions have been studied in Ref. [12]. In this article,
we consider that the minima ofQ that verify S�Q� �
0 are isolated. Note that Eq. (5) does not impose that
A1 � I3; but rather that A1 [ {diag �1;1;1�; diag
�1;21;21�; diag �21;21;1�; diag �21; 1;21�}. Because
this set contains only isolated points, the analysis that
follows in not influenced. The maximum likelihood estimate
is defined by:

Q̂ � arg min
Q

Q�U;Q� subject toS�Q� � 0

2.3. Maximum a posteriori estimator

In some situations, one may have some prior knowl-
edge concerning the value of the parameters we are
estimating. In what follows, this knowledge is expressed
by assuming that the true parameter vectorQ p is a
Gaussian random variable, independent of the observa-
tion noise, of known mean�Q and covarianceS , which
we write asQ p , N� �Q ;S �: Although using a Gaussian
prior is not always realistic, the quantities we estimate
in this paper will be parametrized in such a way that a
Gaussian prior is reasonable (Section 2.5).

Under these assumptions, using the Bayes rule [17], we
can write the posterior probabilityPpost�QuU� of observing
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U when the parameters vector isQ :

Ppost�QuU� /
Y
np

 
1

2ps 2 e2ivnp�Q�2unpi2
=2s 2

!

� 1������������2p�M uSu
p e21=2�Q2 �Q �TS21�Q2 �Q �

;

the inverted logarithm of this function becomes

Qpost�U;Q� �
X
npk

1
2s 2 �unpk 2 vnpk�Q��2

1
1
2
�Q 2 �Q �TS21�Q 2 �Q �1 Constant �6�

In practice, one most often has a prior on a subset of the
parameters only. We can consider thatQ is split in [Q1,Q2],
that no knowledge onQ1 is available, but that we have a
prior such asQ2 , N� �Q 2;S 2�: One then obtains a cost
function similar to Eq. (6), but withS replaced by diag(0,
S2) andS21 by diag�0;S21

2 �:
It is important to note that the use of a probabilistic prior

may suppress the need for constraints (5), sinceQpost (taken
as a function ofQ ), contrarily toQ, may have an isolated
minima. For example, a prior on the structure parametersX
“fixes the scale and orientation” and removes the need for
the constraints. A prior on calibration parametersK , on the
contrary, does not ensure thatQpost has isolated minima.

2.4. Estimator with fixed parameters

One sometimes fixes some of the parameters, that other-
wise could be estimated, for example if “good” values are
known beforehand. Doing so may improve the numerical
aspects of the estimation problem if one removes parameters
that are redundant. For example, it is known that if the
observations come from a distant object, the focal length
and the distance of the object are difficult to estimate
simultaneously.

This “restricted” estimation problem can be seen either as
a ML problem with a smaller vector of parameters, or as a
MAP problem with a zero-covariance prior probability on a
subset of the parameters.

2.5. Choice of parameterization

If the estimated quantities have very different orders of
magnitude, their estimators may become numerically
unstable, and the theoretical covariances irrelevant. The
parameterization is chosen to avoid these pitfalls, by having
E�iK i2� . 1; since this is the module of thexpi parameters.
Note that this requirement onE(iK i2) cannot be exactly
enforced, since these parameters, unlike thexpi cannot be
arbitrarily scaled and one does not know their distribution
precisely.

Neither the rotation parametersW nor the translation
parametersT are normalized in the present work, but

their order of magnitude is reasonable. Alternatively, we
could consider a parameterization ofT that takes into
account the fact thattn3 is strictly positive. For example,
one could estimate an affine function of log�tn3�; chosen
so that the estimated quantity has zero expectancy and
unit variance. This assumes that one knows a priori the
expectation and variance of the scene-to-camera distance.
In practice, a rough guess would be used. The mapping
wn ! An is “centered” on some rotation matrix:A

p

n if it is
know, orÂn: One takes, e.g.An � A

p

nR�wn�; whereR(wn) is
the matrix of the rotation byiwni radians around the 3-
vector wn. Using this parameterization, the standard
deviation of the estimators is easily related to an angle.

For K , based on our experience, and on remarks by Lenz
and Tsai [18], we assumed that the parametersb21/b11

(skew), b22=b11 2 1 (aspect ratio),c1 and c2 (principal
point) all have an expected absolute value of approximately
0.1. This leads us to the parameterization:

K � �10b21=b11; 10b22=b11 2 1; 10c1; 10c2; logb11�: �7�
The focal lengthb11 could be better encoded using a
different affine function of logb11.

3. Covariance of estimators

We derive the covariance matrices of estimators for three
possible cases: the “plain” maximum likelihood (ML)
estimator defined from the observations only, the maximum
a posteriori (MAP) estimator obtained when a probabilistic
prior is available for a subset of the estimated parameters
and finally for the “restricted” ML estimator, in which a
subset of the estimated parameters is fixed to given values.
The obtained expressions, some of which being identical to
those in Refs. [19,20], only involveQ and its derivatives;
they can be applied to any problem of estimation just by
specializing to the particular probability density function at
hand. The lengthy parts of the derivation are placed in
Appendix A.

We shall denote the “true” parametersQ p, our estimate
Q̂ (whether ML, MAP or “restricted”), and the error,DQ �
Q̂ 2 Qp

: Also, we will write Qp � Q�Up
;Qp� � 0; Q̂�

Q�U; Q̂ � and likewiseŜ� S�Q̂ �: In general, an asterisk
will denote a function evaluated inQ p or (Up,Q p), and a
hat will denote evaluation at̂Q or �U; Q̂ �: We will write DQ

and D2
QQ the operations of first and second differentiation

with respect toQ . Likewise, D2
Q U denotes differentiation

with respect toQ andU. One thus has:

DQQp � 2Q
2Q
�Up

;Qp�

D2
QQQp � 22Q

2Q 2 �Up
;Qp�

D2
Q UQp � 22Q

2Q2U
�Up

;Qp� etc…

E. Grossmann, J. Santos-Victor / Image and Vision Computing 18 (2000) 685–696688



3.1. Derivation of the covariance of the ML estimator

A well-known property is that, at the minimum̂Q ; the
derivative ofQ (defined in Eq. (4)) is a linear combination
of the derivatives of constraints; that is, there exist a (row)
vectorL of Lagrange multiplierssuch that:

DQQ̂ 1 LDQŜ� 01×size�Q� �8�
These are the so-callednormal equations. The first-order
Taylor series ofDQQ at �Û; Q̂ �; yields the following
approximation:

DQQp . DQQ̂ 2 D2
QQQ̂DQ 2 D2

QUQ̂e �9�
It is easy to see thatDQQp � 0: SinceQp � 0; and, for all
�U;Q�; Q�U;Q� $ 0; then �Up

;Qp� is a global minimum
of Q (regardless of constraints), which implies thatDQQp �
0: Thus one has:

D2
QQQ̂DQ 1 D2

Q UQ̂e 1 LDQŜ. 0

Likewise, sinceSp � 0� Ŝ; and Sp . Ŝ2 DQŜDQ; we
obtain:DQŜDQ . 0: Using this approximation and writing
in matrix form, one has:

D2
QQQ̂ DQŜT

DQŜ 0

" #
DQ

LT

" #
� 2D2

Q UQ̂e

0

" #
:

Taking H ; D2
QQQ̂; F ; D2

QUQ̂ andG ; DQŜ; one may
write in a shorter way:

H GT

G 0

" #
DQ

LT

" #
�

2Fe

0

" #
: �10�

The vector�DQT
;L� is thusa linear combination ofe . Its

covariance is:

cov
DQ

LT

" #
� H GT

G 0

" #21
s 2FFT 0

0 0

" #
H GT

G 0

" #2T

�11�
It should be noted that in Eq. (10), one could eliminateL
and write a similar expression in whichDQ is a linear

combination ofe :

��I 2 GT�GGT�21G�H 1 GGT�DQ

� 2�I 2 GT�GGT�21G�Fe: �12�
The square matrix in the left-hand side may be invertible

even ifH is not (as in our case). We could use this expres-
sion rather that Eq. (10) to derive an expression for
cov(DQ ), but the resulting expressions are not more
intuitive.

3.2. Covariance of the MAP estimator

When there is some prior knowledge on the estimated
parameters, the likelihood function is modified by the
addition of terms (see Eq. (6)). The covariance matrix of
[DQ TL ] (the detailed derivation is in Section A.1) takes the
form:

cov
DQ

LT

" #
� Hpost GT

G 0

" #21
s 2FF 1 S21S pS2T 0

0 0

" #

× Hpost GT

G 0

" #2T

(13)

whereS p is the true covariance ofQp 2 �Q andHpost is the
Hessian ofQpost in �U; Q̂ �:
3.3. Covariance of the ML estimator with fixed parameters

Another common situation arises when a subset of the
parameters is known, or we assume that its true value can
be replaced by “nominal values”, e.g. to achieve numerical
stability. We splitQ � �Q1;Q2� where� Q1 is known and
are interested in̂Q 2; such that, for a given�Q 1; � �Q 1; Q̂ 2� is
the minimum of the function that associatesQ�U; �Q1;Q2��;
to �U;Q1;Q2�: The various differentials of this function are
written

Gi � 2Q
2Qi
�U; �Q1;Q2�� i [ {1 ;2}
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Fig. 2. Close range: First and fifth images of the sequence.



Hij � 22Q
2Qi2Qj

�U; �Q1;Q2�� i; j [ {1 ; 2}

Fi � 22Q
2Qi2U

�U; �Q1;Q2�� i [ {1 ; 2} :

We show in Section A.2 that the covariance of�DQT
2 ;L� is:

cov

"
DQ2

LT

#
�
"

H22 GT
2

G2 0

#21

�
"
s 2F2FT

2 1 H21S
p

1HT
21 H21S

p

1GT
1

G1S
p

1HT
21 G1S

p

1GT
1

#"
H22 GT

2

G2 0

#2T

;

�14�
where S

p

1 � cov�Qp

1 2 �Q 1�: This matrix is not usually
known in practice, just like the matrixS p in the previous
section.

4. Specialization to the problem of reconstruction

The above formulas hold for any estimator of the
considered types (ML, MAP or “restricted” ML). We now
specialize them to the case of Gaussian noise, when the log-
likelihood is a sum of squared differences between observa-
tions and predictions

DQi
Q�

X
npk

DQi
vnpk�vnpk 2 unpk�=s 2 �15�

D2
QiQj

Q� 1
s 2

X
npk

DQi
vnpkDQj

vnpk 1 D2
QiQj

vnpk�vnpk 2 unpk�

D2
Qi unpk

Q� DQi
vnpk=s

2

A first practical consideration: notice that in the previous
section, one may perform the expansions in Taylor series
aroundQ p rather than inQ̂ : One would then obtain expres-
sions like Eqs. (11)–(14), but withH replaced byD2

QQQp
;

and likewise forG andF. Thus, ifQ p is known, e.g. as in

simulations, one may compute (an approximation of) the
covariance matrix of the ML estimator, without even
needing to know how to implement it.

Second practical consideration: one can eliminate the
need of knowing the second derivativesD2

Q iQj
vnpk when

computing covariance matrices, because, at (Q p, Up),
one hasvnpk�vnpk; and thus the second order terms in
D2

QiQj
Q are eliminated in Eq. (15). Even whenQ p is

unknown, we estimate the covariance of an estimator
at Q̂ ; without using the second derivatives. Justification
for such practice may be found in of [21]. In what
follows, the matricesH will not include the second
derivative terms.

Covariance of the ML estimator: as we consider that noise
termsenpi are independent and have same variances 2, one
has:s 2FFT � s 2D2

Q UQT·D2
Q UQ� H: Replacing in Eq.

(11) yields.

Cov
DQ

L

" #
� H GT

G 0

" #ÿ1 H 0

0 0

" #
H GT

G 0

" #ÿT

�16�

The same simplification can be carried out in Eqs. (13) and
(14).

A prior on the structure, Xp . N�X0;S2� makes the
constraint defined in Eq. (5) irrelevant: all the parameters
can be uniquely determined without having to restrict the
parameter set. The normal equations are:

H1DQ � Fe 1
S21

2 �X0 2 Xp�
06N15

" #
;

where H1 � H 1
S21

2 0

0 0

" #

is the modified matrix of second derivatives (assuming that
the X parameters are stored at the beginning ofQ ). The
covariance of the estimate, assuming thatS

p

2 � S2 is:

covDQ � �H1�21H1�H1�2T � �H1�2T �17�
A prior on the calibration parameters,K p . N�K 0;S2�;

is treated likewise, but keeping the constraintsS, and the
matrix G of its derivatives. IfK is stored at the end ofQ ,
and defining:

H1 � H 1
0 0

0 S21
2

" #
;

the covariance matrix is:

Cov
DQ2

L

" #
� H1 GT

G 0

" #21
H1 0

0 0

" #
H1 GT

G 0

" #2T

�18�
Fixed parameters: fixing Q1� K to some valueK 0 ±

K p
; and assuming thatK p , N�K 0;S1�; the covariance
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Table 1
Expected standard deviation of the error on the estimated parameters. The
error onx andt is “metric”; the mean squared value ofx being 1, an error of
0.1 denotes 10% of error. The error onw is the standard deviations of the
angle between the true and the estimated camera frames. The error onK is
on the calibration parameters, as defined in Eq. (7)

Close range,N � 5; P� 48

x w t K

Calib 0.0005 0.1947 0.0778 0.0518
ML 0.734 2.62 4.47 3.88
TP 0.156 0.57 1.074 0.734
CP 0.068 0.346 0.155 0.0517
TF 0.551 2.314 6.195 1.0
SF 0.256 0.860 1.695 1.188
CF 0.0685 0.346 0.155 0.0518



matrix of the estimator of̂Q 2 � �X;W;T�, takes the form:

Cov
DQ2

L

" #
� H22 GT

2

G2 07×7

" #21
H22 1 H21S1HT

21 0

0 0

" #

� H22 GT
2

G2 0

" #2T

(19)

Here, like in Eq. (14),H22 is the matrix ofQ derived twice
with respect toQ2 � �X;W;T�, at �U;Q̂ 2�; H21 is the
matrix of the second derivatives ofQ with respect toQ1 �
K (columns) andQ2 (rows). And G2 is the matrix of
derivatives ofS with respect toQ2. The matrix G1 that
appears in Eq. (14) is zero, and the corresponding terms in
Eq. (19) have been removed. Note the same form of
covariance matrix is obtained when only a sub-vector of
K is fixed.

The variance of each estimated parameter appears on the
diagonal terms of the matrices in Eqs. (16)–(19). As they
are, these expressions do not tell the actual values that one
will observe in practice. However, once one has obtained
the output from one of the considered estimators, it is
possible to determine the precision of this estimate.

5. Experimental results

We performed various experiments (real and simulated)
to study the performance of the estimators. The errors on the
parametersX, W, T andK are studied separately. ForX
andK , which are normalized for havingE�ixpi2� � 1; and
E�iK i2� . 1; the error measures are the standard deviations
of ixp 2 xp

pi andiK 2 K pi. ForT, the standard deviation of
it 2 tpi is used too. We saw in Section 2.5 thatT is
expressed in the same unit asX. For W, the measure is
the standard deviation of the angle formed between axes
of the true and the estimated camera frames,iwn 2 wp

ni:
We begin by validating experimentally the expressions

for the covariance matrices in Eqs. (11), (16) and (17) to the
case of 3D reconstructions. We then show the precision

obtained by estimators in two real-world situations, one a
close-range sequence of five images, and the other a long-
range sequence of 12 images. Finally, we use simulation to
evaluate the effect on precision of the number of images in a
sequence and the relative disposition of the cameras.

5.1. Validation of the analytical expressions of covariances

The covariance matrices in Eqs. (16)–(19) are obtained
using the approximations (9) and (15). We must verify that
they are valid in practice. This is carried out by implement-
ing the considered estimator, and verifying that the error
committed is consistent with the predictions. We have
built 100 “general position” setups of 10 points seen in
five images. For each setup, the corresponding theoretical
covariance matricesSQ , are computed. The observationsU
(Q ) are contaminated by i.i.d. Gaussian noise, at 40 dB,2

and a ML estimateQ̂ is determined. The error committed
on each individual parameter ofQ is scaled by the corre-
sponding theoretical standard deviation. These values
should follow a law N(0,1) if the theoretical variances
were correct. The histogram of the resulting values is
shown in Fig. 1 together with a reference Gaussian density
curve. For that noise level, the theoretical and true
covariances are very similar, and we conclude that the
theoretical variances are realistic.

5.2. Variance of estimators

In the next sections, we will compare the precision of
various estimators. In the following tables, each row
displays results concerning a given estimator. To allow
easy identification, we use the following labels:

1. Full reconstruction based on observations only.
ML: maximum-Likelihood estimator of the whole
vectorQ , with covariance defined in Eq. (16).

2. Full reconstruction with a prior on structure (MAP
estimation).
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Fig. 3. Long range: First and tenth images of the sequence.

2 Noise level, in decibels is defined as dB� 210 log10�var�e�=var�u��:



Calib contains results obtained when calibrating from
known object, i.e. when one uses a prior on the
structure. The covarianceSCalib is determined by Eq.
(17). The diagonal terms ofSCalib from the diagonal of
matrixS1 in Eqs. (18) and (19), all non-diagonal terms
being 0.

3. Full reconstruction with a probabilistic knowledge on the
intrinsic parametersK . This corresponds to MAP
estimation, and the covariance is given by Eq. (18). We
further consider the following two cases:

TP: since we parametrizedK in such a way that the
individual parameters have (approximately) zero
mean, and unit variance, one can say thatK0 �
�0 0 0 0 0� constitutes a (nominal) estimator ofK p,
with covarianceS1 � I5:

CP: we assume that a prior estimate onK p is available,
whose covarianceS1 is equal toSCalib on the diagonal
terms, and zero otherwise.

4. In case of some intrinsic parameters being fixed, the
covariance of the estimator is given by Eq. (19), and
we distinguish the following three cases:

TF:Q1 � K is fixed, e.g. to [0 0 0 0 0]. This constitutes
a (nominal) estimate ofK p, with covarianceS1 � I 5:

In the notation of Section 3, one hasQ1 � K � 05:

SF: in real-word situations, the skew and aspect-ratio
(k1 andk2) do not change as much as the other intrinsic
parameters and they may be given by the camera
manufacturer, or by a previous calibration step. In
the SF estimator, [k1,k2] are fixed to values� �k1; �k2�
given a priori The precision of this estimate is assumed
to be comparable to that of calibration from known-
object (the Calib estimator). In the notation of Section
3, the subvectorQ1 is � �k1;

�k2�, andS1 is formed by the
diagonal elements of upper-left 2× 2 subblock of
SCalib.
CF: we assumeQ1 � K is known with the same
precision as in Calib. ForS1, we take the diagonal
part ofSCalib.

5.2.1. Short-range
We compare the relative precisions using a real-world

sequence of 5 images of a static scene, with fixed intrinsic
parameters and 48 hand-matched points on a calibration
grid. This setup is shown in Fig. 2. Total rotation is. 30
degrees. Hand-measurements provided us (a prior on) the
3D point positions, with an accuracy that we estimate at 1%
�.2 mm�. We can thus perform calibration from a known
object, and computêX;Ŵ; T̂ and K̂ : Table 1 shows the
standard deviations obtained for each type of estimator,
using Eqs. (16)–(19). The value ofs that we used is the
standard deviation of the residualsunpi 2 vnpi�Q̂ �, which
corresponds to 48 dB.

The most important features apparent from this table are:

• The ML and TF estimators have very high covariance,
for which the validity of Eqs. (16) and (19) should be
verified.

• The precision obtained with full calibration information
(CP and CF) is much better than that obtained without
(lines ML, TP, TF), or with only skew and aspect ratio
information (line SF).

• Without pre-calibration, the use of a nominal prior (TP,
third line) provides much better estimates than either the
ML or the nominally fixed parameter (TF) estimators
(second and fifth lines).

5.2.2. Long-range
The grid in Fig. 3 is seen along 12 images, from 1.5–

2.5 m, and the maximum camera–camera distance is
. 1:3 m. The standard deviations of the five tested
estimators are displayed in Table 2. For the CP and CF
(fourth and sixth lines) estimators, the covariance of the
prior is that of short-range calibration. The ML and TP
estimator second and third lines) perform nearly as well as
the estimators that use prior calibration (fourth and sixth
lines). The estimator with fixed nominal parameters,
however, appears to behave relatively poorly. The first
point appears to be due to the increased numbed of images
used and to the greater baseline between the cameras, as will
be shown in shown in the following experiments.

5.2.3. Influence of the number of images
Fig. 4 plots the base 10 logarithm of the variance in

structure and in intrinsic parameters, as function of the
number of images used. In this experiments, thirty synthetic
setups were generated, each with twelve 3D points,
generated as Gaussian white noise, and then normalized.
The camera orientations have Euler angles independently
uniformly distributed in �^p=4� × �^p=4� × �^p=8�: The
scene–camera distance is 6–12 times the size of the
scene. The precision of the camera calibration is that of
line Calib in Table 1, and the observations noise has
variance 1024.

Fig. 4 shows that long sequences of uncalibrated images
allow as good 3D reconstruction as short calibrated
sequences, whereas short uncalibrated sequences give
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Table 2
Expected standard deviation of the error on either structurex, orientationw,
positiont or calibration parametersK . w is expressed in degrees

Long range,N � 12; P� 48

x w t K

Calib 0.00029 0.21517 0.19428 0.1248
ML 0.0432 0.1866 0.6983 0.4944
TP 0.0424 0.1754 0.5285 0.3462
CP 0.0364 0.1525 0.1919 0.0461
TF 2.1625 10.7319 6.3661 1.0
SF 0.0404 0.1608 0.2995 0.1005
CF 0.0407 0.1763 0.2068 0.05175



poor results. In all cases, it is better to use a nominal prior
than to fix the intrinsic parameters to nominal values.

Sections 5.2.4 and 5.2.5 present studies of the effect of the
positioning of three cameras on the precision of various
estimators.

5.2.4. Importance of orientation change
In Ref. [12] it is shown that if the rotations between the

camera frames all have a common axis, then the problem of
self-calibration is ill-posed. To investigate this, we fix two
cameras: the orientation of the first is the 3× 3 identity
matrix, that of the second is a rotation around they axis
by p/6 radians (bottom cameras in Fig. 5(b)). The third
camera is rotated by a variable angle around thex axis. If
the angle is zero, the first and third cameras are equal and it
is impossible to estimate all the parameters. Fig. 5(a) shows
how the error in estimated structure parameters varies with
the rotation of the third camera. We generated 40 random
setups, each consisting of 20 points. For each point setup,
and for each tested angle value, we use Eqs. (16)– (19) to
compute the covariance of the considered estimators, at the
true valueQ p. Fig. 5 plots the base-10 logarithm of the
standard deviation of an estimated structure parameterx̂pi.
The main observations are the following:

• Three of the curves go down sharply, in the right neigh-
borhood of zero: the ML (with asterisks), SF (circles) and
TP (plain curve). This last curve, if continued towards to
zero, would not become unbounded, whereas ML would.
The error of these estimators is quite high (.3%) when
the angle is smaller than 0:4 . p=8.

• The TF (top curve) displays very high error�.30%�,
which may be outside the domain of validity of Eq.
(19). In practice, the implementation of that estimator
will not produce estimates with independent error terms
of high variance, but rather, will produce a much-
distorted estimate of the structure. The curve is bounded
near zero.

• The two bottom curves, CF (with circles), and CP (plain)

are bounded near zero too, as the estimation problem is
well posed.

5.2.5. Angle between viewpoints (baseline)
To analyze the influence of varying the viewing angle,

we again use three cameras. This time, the second and
third cameras are rotated by an equal amount, around the
x andy axes, respectively. When the angle between view-
points is small, the three cameras are nearly equal, and the
estimation problem is singular. When the angle is nearly
p radians, the second and third cameras, are nearly equal,
and are facing the first. This situation is also singular. Fig.
6 shows the effect of the rotation angle on the error. The
error is computed in the same manner as in the previous
experiment.

The general tendencies of the error on structure (Fig. 6a)
and calibration (Fig. 6b) are the same:

• The TF curve (with circles) which is almost systemati-
cally above all others, both for structure and calibration
(Fig. 6a and b).

• The three curves of the ML, TP (plain) and SF (circles)
estimators are joined together on the left side, and split
after 2p /3. The estimator with fixed skew and aspect-
ratio (SF) performs clearly better for bigger angles.
Using a nominal prior (TP) improves the accuracy for
angle near 0 andp. In all three cases, the precision is
best for angles in [p/3,5p/6]. Next to 2p/3, the precision
is nearly as good as in the calibrated case.

• The curves of the CF (with circles) and CP (plain) are
always below the others.

6. Conclusions

We have analyzed the problem of the precision that is
achievable in 3D reconstruction from uncalibrated views.
Although a lot of work has been carried out on various
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Fig. 4. The log (base 10) of the error on the structure parametersX and calibration parameters,K . The curves are tagged ML, TP, CP, TF and CF as explained in
the text.



forms of reconstruction, the problem of precision evaluation
is seldom addressed in a systematic way.

We have formulated the problem in a probabilistic frame-
work. We further considered that various types of prior
information may be available and defined the corresponding
estimators.

One contribution of this work is the analytical derivation
of the covariance matrices for the set of estimators. These
derivations are immediately applicable to other estimation
problems in which the noise of the observations is i.i.d, and
may easily be generalized to non-i.i.d. noise. This analysis,
applied to the case of 3D reconstruction, provides insight
relative to what precision can be expected in each circum-
stance, anddoes notdepend on a particular implementation.
We validated experimentally the obtained expressions.

Finally, we compared experimentally the precisions of
various estimators. For each, using both synthetic and real
image data, we analyzed the influence on precision of the
number of images, the camera disposition etc. The main
conclusions of our experimental work can be summarized as:

• Pre-calibration, if one may assume that the intrinsic
parameters do not vary, greatly improves the precision
of reconstruction. When realistic calibration parameters
are available, they can be fixed: compare the “CP” and
“CF” lines in the tables and graphs above.

• Long sequences, or good positioning of cameras, greatly
improve the quality of uncalibrated reconstruction. There-
fore it shows the potential quality of euclidean reconstruc-
tion obtained from long uncalibrated sequences.

We presently are further analyzing the influence of sequence
length, number of points and noise in image measurements.
On the analytical side, we plan to extend the present work to
variable intrinsic parameters.
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Appendix A. Derivation of the covariance matrices

A.1. Covariance of an estimator, when a prior is used

The derivation is very similar to that of the ML estimator,
in Section 3. In what follows, we assume that our prior may
be inaccurate. Thetrue matrix of the covariance ofQ p 2
�Q ; S p

; may be different from theassumedcovariance
matrix, S . In practice,S p is most often not known, and it
is replaced byS in numerical computations. However, for
theoretical considerations, we assume thatS ± S p. The
cost function (proportional to the inverted logarithm of the
posterior probability density ofQ whenU is given) is now:

Qpost�U;Q� � Q�U;Q�1 �Qp 2 �Q �TS21�Qp 2 �Q �
At the minimumQ̂ :

DQQ̂post 1 LDQŜ� 0

Since (expanding as first-order Taylor series)

DQQp
post� �Qp 2 �Q �TS21.DQQ̂post 2 D2

QQQ̂postDQ

2 D2
QUQ̂poste;

one has

D2
QQQ̂postDQ 1 D2

Q UQ̂poste 1 LDQŜ. �2Qp 1 �Q �TS21
:
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Fig. 5. (a) Error vs. Angle. The first and second cameras are related by ap /6 radians rotation around the y axis. The error in the structure parametersX is plotted
vs. the angle relating the first and third (top) camera. (b) Setup. The angle between the two first camera (at bottom) is fixed top /6, whereas the angle of the third
(top) camera is made to vary.



Likewise, having Sp � 0� Ŝ and Sp . Ŝ2 DQŜDQ;

implies thatDQŜDQ . 0: Altogether (neglecting the higher
order terms), it yields:

D2
QQ

Q̂post DQŜT

DQŜ 0

24 35 DQ

LT

" #

� 2D2
Q U

Q̂e 1 S21�Qp 2 �Q �
0

" #
;

and the covariance of�DQTL� is:

cov
DQ

LT

" #
� Hpost GT

G 0

" #21
s2FF 1 S21S pS2T 0

0 0

" #

� Hpost GT

G 0

" #2T

; (A1)

whereS p is the true covariance ofQp 2 �Q ; which may be
different fromS , andHpost� D2

QQQ̂ 1 S21 is the Hessian
of Qpost in �U; Q̂ �:

A common situation is when a prior is available for some
parameters only, for example when one is performing
calibration from a known object, or when one has a prior
on the intrinsic parameters only. If we assume the parameter
vector is split like Q � �Q1;Q2�; with a prior
Q2 , N� �Q 2;S2�, one obtains a result similar to Eq. (13),
whereS is replaced by diag(0,S2) andS21 by diag�0;S21

2 �,
and likewise,S p.

A.2. Covariance of the ML estimator, when some of the
parameters are fixed

We split Q � [Q1,Q2], and are interested in̂Q 2; such
that, for a given �Q 1; � �Q 1; Q̂ 2� is the minimum ofQ(U,.)

within the setS21({0}). We note

DiQ� 2Q
2Qi
�U;�Q1;Q2�� i [ {1 ; 2}

D2
ij Q� 22Q

2Qi2Qj
�U;�Q1;Q2�� i; j [ {1 ;2}

At the minimumQ̂ 2:

D2Q�� �Q 1; Q̂ 2��|�����{z�����}
D2Q̂

1 LD2S�� �Q 1; Q̂ 2��|�����{z�����}
D2Ŝ

� 0

Writing DQ2 � Q̂ 2 2 Q p
2 ; the first-order Taylor expansion

is:

D2Qp � 0 . D2Q̂ 2 D2
21

Q̂·|�{z�}
H21

� �Q 1 2 Q p
1 �

2 D2
22

Q̂|{z}
H22

DQ2 2 D2
2U|{z}
F2

Q̂e;

one has

H22DQ2 1 LD2Ŝ. H21� �Q 1 2 Q p
1 �2 F2e:

Now, sinceS� �Q p
1 ;Q

p
2 � � � 0� S�� �Q 1; Q̂ 2��; and

S��Q p
1 ;Q

p
2�� . S�� �Q 1; Q̂ 2��2 D1Ŝ·� �Q 1 2 Q p

1 �2 D2ŜDQ2;

one has:

D2Ŝ|{z}
G2

DQ2 . 2 D1Ŝ·|{z}
G1

� �Q 1 2 Q p
1 �:

Neglecting the higher order terms, and writing in matrix
form, we obtain:

H22 GT
2

G2 0

" #
DQ2

LT

" #
� 2F2e 1 H21�Q p

1 2 �Q 1�
G1� �Q 1 2 Q p

1 �

" #
;
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Fig. 6. Error vs. Angle. The second and third cameras are rotated with respect to the first camera around they andx axes, respectively. The error in the structure
parametersX, and in the calibration parametersK are plotted vs. the angle, in (a) and (b), respectively.



and the covariance of�DQT
2 ;L� is:

Cov
DQ2

LT

" #

� H22 GT
2

G2 0

" #21
s 2F2FT

2 1 H21S
p

1HT
21 H21S

p

1GT
1

G1S
p

1HT
21 G1S

p

1GT
1

24 35

� H22 GT
2

G2 0

" #2T

; (A2)

where S
p

1 � cov�Q p
1 2 �Q 1�: This matrix is not usually

known in practice, just like the matrixS p in the previous
section.
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