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Abstract

We present a method for reconstruction of structured
scenes from one or more views, in which the user provides
image points and geometric knowledge -coplanarity, ratios
of distances, angles- about the corresponding 3D points.
First, the geometric information is analyzed. Then van-
ishing points are estimated, from which camera calibration
is obtained. Finally, an algebraic method gives the recon-
struction.

Our algebraic reconstruction method improves the
present state-of-the-art in many aspects : geometric knowl-
edge includes not only planarity and alignment information,
but also known ratios of lengths. The single and multiple-
view cases are treated in the same way and the method de-
tects whether the input data is sufficient to define a rigid re-
construction. We benchmark, using synthetic data, the var-
ious steps of the estimation process and show reconstruc-
tions obtained from real-world situations in which other
methods would fail.

We also present a new method for maximum likelihood
estimation of vanishing points.

1 Introduction

It has been shown [2, 6, 7, 5] that 3D reconstruction is
achievable from a single image, provided that some geomet-
ric properties about the scene are known, as is possible in
urban or indoors scenes. Possible applications include his-
torical studies, urbanism, real-estate etc. In this article, we
present a method for obtaining such reconstructions.

We consider structured scenes : there exist parallel lines
and planes, some distances are equal or have known ratios.
The directions that define these planes and lines play a spe-
cial role and we call them “dominant directions”.

The input could consist in one or more images, as in
Fig. 1 (left). The user identifies the projections of 3D points
to be estimated (white dots in the figure) and gives some
geometric properties, such as :

� The five big white dots (at the right of the image) all
belong to a “X-Z” plane. Other planes and lines have
likewise been given.

� The slanted wall surface (bottom of walls) stick out
by the same amount along the “X” and “Y” directions
(distance “ ��� ” in the figure).

� The distances � � , along the “X” axis is equal to the
distance ��� along the “Y” axis (distance “ ��� ”). Also,
the distances �
	 along the “X” and “Y” axes are equal
to ������������������ .

We will call “geometric information” all the coplanarity,
alignment and distance ratio information given by the user.
The input data is given a formal definition in Section 1.1.

The proposed method works in two steps : first, vanish-
ing points1 of the dominant directions are estimated and, if
possible, the camera(s) is (are) calibrated. Then, the recon-
struction is obtained by an algebraic method.

We outline here the algorithm, details being given in Sec-
tions 2-3. Each part of the algorithm is summarized at the
end of the corresponding section.

Vanishing points Any number of dominant directions
may be present. In Figure 1, there are five, labeled “X”,
“Y”, “Z”, “U” and “V”. Maximum Likelihood estimates of
the vanishing points are obtained (Section 2.1) under the as-
sumption that the error on the observations are Gaussian,
indepentent and identically distributed. Under the above
assumptions, the likelihood function is the sum of the eu-
clidean distance from the points to the lines that contain
them, and pass through the vanishing point.

Calibration can be obtained if a right trihedron exists
amongst the dominant directions [1]. Otherwise, an affine
-rather than euclidean- reconstruction is obtained.

Projection matrices are obtained [1] from the vanishing
points.

1The vanishing point of a 3D direction � is the unique image point in
which all projections of 3D lines parallel to � intersect.



Figure 1. Left : Image with dominant directions (X,Y,Z,U,V,W) and 2D points. Right : Reconstruction.

The algebraic reconstruction method for obtaining re-
construction from 2D points and geometric information is
the main contribution of this article. It’s main characteris-
tics are :

1. A criterion, insensitive to noise, is used to determine
whether the input data defines a rigid reconstruction.

2. Known ratios of distances between parallel planes may
be specified, which also allows to exploit symmetry in
the scene.

3. All 3D points and camera position(s) are obtained si-
multaneously (unlike in [7, 6]). No reference plane [4]
or shape template [2] is used.

4. Multiple and single-images cases are treated in the
same manner. It is not necessary (although feasible)
to track points across images to obtain reconstructions
from many views.

5. The reconstruction always verifies exactly the geomet-
ric properties given by the user, unlike in [6, 7].

The algebraic reconstruction method first determines (Sec-
tion 3.1) the linear constraints -referred to as “geometric
constraints”- that are imposed on the coordinates of the 3D
points by the geometric information. The set of feasible
coordinates is a vector subspace, for which a basis is com-
puted.

Then, the observed 2D points impose another set of lin-
ear constraints, “observation constraints”, on the coordi-
nates and on the camera positions (Section 3.2). In the pres-
ence of noise, a least-squares solution is sought.

In the noiseless case, and if the input data defines a
rigid reconstruction, the geometric and the observation con-
straints are all simultaneously feasible, and the set of their

solutions is a subspace of dimension four (Section 3.3). If
this subspace is of greater dimension, this indicates that the
input data is insufficient to define a rigid reconstruction. If
there is noise in the observation, the rank is altered and
this criterion cannot be used as-is. However, it is possi-
ble to generate a set of 3D points that verify the geometric
constraints, and project them in the image plane, resulting
in a noiseless set of observations; from these, one obtains
noiseless observation constraints. We show that the original
dataset defines a rigid reconstruction if and only if the set
of coordinates that solve simultaneously the geometric and
noiseless observation constraints is of dimension four. This
criterion is insensitive to noise. In Section 3.3, we give a
precise definition for a “rigid reconstruction” and the cor-
responding criteria.

In the rest of this section, the notations and assumptions
are introduced and in Section 2 the estimation of vanishing
points and calibration is presented. Section 3 describes the
algebraic reconstruction method. Section 4 presents some
experimental results : benchmarking of the algorithms is
done using synthetic data, and results obtained from real-
world images are shown.

1.1 Definition of the input data

The input data consists in 2D pixel coordinates���������������
	����� , localized in one of � images and ge-
ometric information representing known geometric proper-
ties of the 3D points and of the 3D dominant directions.
This geometric information consists in :
� Known angles and coplanarities between dominant di-

rections.
� Planarity information: Subsets of 2D points whose

corresponding 3D points are known to belong to a 3D
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plane parallel to two of the dominant directions, which
are also given. Alignement information can be repre-
sented by planarity information.

� Metric information: Pairs of pairs of parallel planes
��������� � and �����	�
� � and the knowledge of the ratio �
of the distances between these planes. Each plane is
defined by a 2D point �� which it contains and by
two directions ��� and ��� parallel to it.

� One knows what image each point ��� comes from.

1.2 Notations and assumptions

The 3D points and dominant directions will be writ-
ten � ��������������� and � ��������������� respectively and identified
with their coordinates in the basis  	� ����� �!����"�# . We assume
the first three dominant directions are independent, so that
they form a basis. If a right trihedron is given, we assume
that it is  �� � ��� � ��� " # . We call $&% � ����������$&%� the vanishing
points corresponding to the dominant directions in image
number ' ; all the $ %� need not be observed.

Image lines are represented by a (*),+ vector - . The set of
2D points contained in this line is .!�0/21 �4365 ��78+�9:-�;=<�> .

The observations are obtained by perspective projection.
Assuming �� has been observed in image ' , one has [3, 1] :? ��+A@ ;CBED %GFIH %� H %� H %"!JK LNM OP�Q R �GTSVU %!WYX ?,Z <[@ � (1)

where B is a scale factor, D % is the matrix of intrinsic pa-
rameters, U % is the position of the camera in world coor-
dinates. The error in the observations, the terms

Z  , are
supposed to be independent, Gaussian and with covariance\ � 5^] ] 9 , for some unknown \ .

2 Vanishing points and calibration

We now show how to estimate the vanishing points of
some dominant directions and partial camera calibration.

2.1 Vanishing point estimation

First, the geometric information is examined to deter-
mine, for each direction, sets of 2D points that are the pro-
jections of 3D points on 3D lines parallel to that direction.
A maximum likelihood estimate is computed for each van-
ishing point for which two or more lines are available.

A vanishing point $ %� can be estimated if, in image ' ,
the projections of at least two 3D lines, parallel to � � , are
observed. The 2D points �  ] ���_�`�`��� ba are known to lie
on the projection of a 3D line parallel to ��� if there ex-
ist two distinct planes, specified by the user, that contain

the direction ��� and contain the points c �����`�_�`��ced . Letf �,; �gc �� ���_�`�_��c �d ] �N��������� f:h ; �gc h � ���_�`�_��c hd&i � be the lists
of indices of points in image ' that belong to the projection
of a 3D line parallel to ��� . The maximum likelihood esti-
mate of the vanishing point is the point $ such that there ex-
ist lines - �����`�_�`��- h passing through $ that minimize the func-
tion :

�g$Y��- �����`�`�_�j- h ��S�k hl��m�� d�nlo m�� �qp	-������  n r�s �K LNM Ot nNu`vwn�x �
where ���y-���� � is the euclidean distance between the line -
and the point � . The search for the optimal $ is greatly
simplified by the fact that for all $ and all z , the line - �
passing through $ that minimizes {&� �|-I� � is either the line } -��
that passes through $ and ~���G;�� o �  n r ����� (the centroid

of the set of points), } - � ;�$�)�~� � , or the line } -y�� orthogonal

to } - � and passing through $ . One then has to minimize a
function of $ alone :$�S�k hl��m � min ��{�� p } -�� s ��{�� p } - �� s�� �

This expression can be further simplified for easy com-
putation. Its minimum is found using Nelder-Mead opti-
mization [8] with multiple starting points.

2.2 Calibration

If the first three dominant directions form a right trihe-
dron and D has the form

D�;���8� ���� ���+
�� � (2)

then it is well known [1] that � can be estimated from the
vanishing points $ � , $�� and $�" , except in some pathological
cases. In this article, we only estimate � and assume that��� ; ��� ;T< .
2.3 Estimation of principal directions

It is clear that in the basis formed by the first three
dominant directions, the coordinates of these directions are� � ; R +�<�< W 7 , � � ; R <�+�< W 7 and � " ; R <�<�+ W 7 . The co-
ordinates of the other dominant direction, i.e. the vectors�:�!������� (if any) can then be estimated by :� � ; F $ % � $ %� $ %" JY� � $ %� �
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2.4 Summary of algorithm (I)

1. Determine some vanishing pointby ML estimation and
coplanarity constraints.

2. If a right trihedron is given, Estimate calibration ma-
trices D % . and left-multiply the observations R �  + W 7the vanishing points $ %� by D � �% .

3 Algebraic reconstruction method

In this section, the algebraic reconstruction method is
presented. Three linear systems are considered : one is built
from the geometric information and determines a linear sub-
space in which the reconstruction belongs. The second is
built from the observed 2D features and defines the recon-
struction. The third system has the same structure as the
second and its corank determines whether the reconstruc-
tion is unique up to scale and translation.

3.1 Geometric constraints

We now show how to express the geometry information
-coplanarity and metric information- as a linear system of
equations on the coordinates of the 3D points. We build
a basis for the set (a subspace) of coordinates that verify
these equalities. Examining this basis, one checks whether
the user provided coherent geometric information.

Planarity information If two points c � � are known to
belong to a plane parallel to the directions

� � z , one can eas-
ily show that the coordinates �8��j�G� verify :

�y����)8��� � 7 ��=S �g����)���� � 7 �G��;C< � (3)

Metric information If points �yc � � � (resp. ������� � ) lie on
a pair of parallel planes ���Y� � (resp. �����
� ) with normal �
(resp. � ) and one knows the ratio � of the distances from� to ��� and from � to �
� , a linear constraint on the coor-
dinates of points c � � ��� and � can be found :� 7 �y��=SV�G� ��;=�	� 7 �y��
^S0���� � (4)

Note that the ratio of � 7 �|��TSV�G� � over �G7 �|��
 SV��� �
is not invariant by affine transformations unless � ;�� .
Thus it only makes sense to have ���;�� if an Euclidean
reconstruction is sought. The normals may be specified as
the cross product of two dominant directions, or, if an Eu-
clidean reconstruction is sought, by a dominant direction.

Using all the equations (3) and (4) provided by the ge-
ometric information, one gets a system of equations, the
geometric constraints :

� � ;�� � (5)

where � ; 5 ��7 � �����������87� 9 7 is the (�� ) + vector holding
all the point coordinates.

We call � a (�� )�� matrix whose columns form an
orthonormal basis of the nullspace of

�
. All the solutions

to Eq. (5) are of the form��;���� (6)

for some ��/e1�� .
Examining � allows us to check the coherence of the

geometric information : if
�

has full rank, or if some rows
of � contain only zeros, the geometric constraints only have
trivial solutions, most likely indicating an invalid geometric
information.

3.2 Observations constraints

A linear system is now built from the 2D informa-
tion, that constrains the coordinates of the reconstructed 3D
points. In the presence of noise in the observations, this
system may have no exact solution of the form (5) and the
reconstruction is obtained as a least-squares solution.

Observation of a 2D point constrains the corresponding
3D point to lie on a 3D line. Not surprisingly, from each
observed 2D point �� , one obtains two affine constraints
on the coordinates �� .

For each observed point � , projection of � , and each
vanishing point of the basis directions H � (we omit the im-
age number ' ), one can build the 2D line containing both
points : -! H � ) ? � +�@ �
This line is the projection of the 3D line parallel to the

� th
basis vector and passing through � . Of course, one has5 ��7e+�9:-�;=< , so that, using Eq. (1), one obtains :- 7 H �#"%$�� X - 7 H �&" "%$��#" "�S0- 7 H �#"(':�#":S0- 7 $��&" "�':�#" "[;=<C�

(7)
where

� � and
� � � are such that  � � � �g� � � �y#V;  4+4�*)6�j(6# . The

three linear equations Eq. (7) (one per vanishing point H � )
obtained for each point form a system of rank two.

By concatenating the equations (7) obtained for each
point, one obtains a linear system of observation con-
straints : + � X , U ;�� � (8)

where U ; 5 U�7 � ������U�7- 9 7 and
+

and
,

are (�� )2(�� and(.� )�(�/ matrices holding the coefficients that multiply el-
ements of � and U , respectively. Since the geometric in-
formation constrains � to have the form of Eq. (6), Eq. (8)
can be rewritten as : +

��� X , U ;=< � (9)
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3.3 Nature of the solution

In this section we show how the rank of a certain ma-
trix indicates whether the user provided data that defines a
unique reconstruction up to scale and translation.

Definition: One says that a dataset defines a rigid re-
construction if and only if there exist vectors ��� ;5 � � 7� �����j� � 7� 9 7 / 1 "j� and

� U �4��������� � U - / 1 " such
that, for all � and U that verify Eqs. (9) , there is a scale
factor B2/e1 and a vector U �
/21 " such that :�� ; B�� � X U���� ��� c /  +!�`�_� � #��U % ; U � X B � U % ���:' /  4+!�`�`� /q# �

where 	  /  +!�`�_� /q# is the index of the image in which�� is observed.
Here, the �  are “base” reconstructions, the

� U % are
displacements between camera positions, and B , U � are the
arbitrarily chosen scale factor and position of the first cam-
era.

If there is noise in the observations �� , Eq. (9) will
have no exact solution. For a noisy dataset, one defines a
rigid reconstruction as follows : assuming the observations
are obtained by Eq. (1), one says that the dataset defines a
rigid reconstruction if and only if the noiseless observations
(Eq. (1) without the noise term

Z  ) define a rigid recon-
struction. Property B, below, says that, even without know-
ing the noiseless observations, it is possible to determine
whether a dataset defines a rigid reconstruction.

Property A: In the absence of noise, there is a rigid re-
construction if and only if the matrix R + � 3 , W has corank
equal to four. We do not give here a proof of this statement.

If there is noise in the observations �  , the rank of the
matrix R + � 3 , W will be altered and one cannot use the cri-
terion given above.

However, one can build matrices 
+ and 
, such that there

is a rigid reconstruction if and only if F 
+ � 3 
, J has corank

four. We call F 
+ � 3 
, J the “twin matrix” of R + � 3 , W . This

matrix is obtained in the following way : one generates ran-
domly a vector 
�A/C1 � whose elements are all distinct,
and distinct vectors 
U �&���`�_�`��
U - . One defines 
� ; ��
� and
then produces, using Eq. (1), noiseless observations 
�� ,
the projections of the 3D points 
�� . Finally, from these
2D points, one builds the matrices 
+ and 
, in the same way
that

+
and

,
were obtained from the �� .

Property B: There is a rigid reconstruction if and only if

the “twin matrix” F 
+ � 3 
, J has corank equal to four. We do

not give here a proof of this statement.

Note that this criterion is not influenced at all by noise
in the observations or in the vanishing points.

3.4 Computing a solution

We assume the twin matrix has corank four. The space
of solutions to Eq. (9) would have dimension four in the
absence of noise. In the presence of noise, we approximate
this space by : G? � U @ ;�� �����������
where the columns of � are the right singular vectors ofR + � 3 , W corresponding to the smallest singular values. It is
often more convenient to represent the solution space by :G? � U @ ; ? ��� �� � @ ����������� �
where � ; 5 � 7� � 7� 9 7 and � �&��� � have � and (./ rows
respectively (corresponding to � and U ).

Obtaining a particular solution can be done by imposing
four additional constraints to � and/or U , for example by
fixing the center of mass of the scene and its scale.

3.5 Summary of algorithm (II)

1. Build the matrix
�

from the vanishing points $ %� and
geometric information; compute a basis � for the
nullspace of

�
, check that it contains only non-zero

points (stop otherwise).

2. Build the matrices
+

and
,

from the vanishing pointsH %� and the observations �� .

3. Build the twin matrix F 
+ � 3 
, J . Verify that it has

corank equal to four (stop otherwise).

4. Compute a basis for the space of solutions and a par-
ticular solution using other constraints.

4 Experimental results

4.1 Sensitivity to noise

We study the effect of noise on the algebraic reconstruc-
tion method -for Euclidean reconstruction, on the estima-
tion of vanishing points and on the calibration process. Us-
ing synthetic data, with varying noise level, we study the
error in the resulting reconstructions. A very wide range of
noise levels is covered.

The “house” object shown in Figure 2 (left), consisting
of ten points, is used. It’s coordinates are all within the in-
terval R S +!��+ W . Five directions, “Z”, “X”, “Y”, “U” and “V”
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are present, the last four being coplanar. Nine planes are
identified. The object is rotated randomly and observed by
perspective projection, the matrix D in Eq. (1) is of the form
(2) where � , the focal length, is generated randomly with a
uniform density probability function in R +4� � � ) W -not an un-
common value if pixel coordinates have been normalized toR S +4��+ W . The principal point R � � � � � W is likewise taken to be
uniformly distributed in R S�<E� <��6�6< � <�� W .

Noise is added to these observations with amplitudes
varying from 25dB (6% error : the standard deviation of the
error is 0.06 times that of the observations) to 60dB (0.1%
error). In real-world situations, we believe the noise levels
are in the range 0.3-1% (40-50dB).

The vanishing points are estimated and calibration is
obtained from the dominant directions “X”, “Y” and “Z”.
Then, the algebraic reconstruction method is used to obtain
the reconstruction, in three different cases :

1. Using the maximum likelihood vanishing points and
focal length estimated as in [1].

2. Using the maximum likelihood vanishing points and
the true calibration matrix D .

3. Using the true vanishing points and calibration matrix.

This experiment was repeated 50 times. The error between
the true and estimated parameters are measured.

Vanishing points and calibration Figure 2 (middle)
shows the mean absolute error, measured in degrees in the
estimated vanishing points. The smooth curve shows the
error in the vanishing points estimated from two lines (“U”
and “V” axes) and the dashed curve is for vanishing points
estimated from four (“Y”,“Z”) or five (“X”) lines.

Algebraic reconstruction The smooth curve in Figure 2
(right) shows the mean error of the reconstruction algorithm
when the true vanishing points and calibration are given; the
dashed curve is for estimated vanishing points and known
calibration, and the dotted curve is for estimated vanishing
points and calibration.

For values that are common in practice, between 0.3%
and 1% the error level is seen to be very reasonable. For
higher noise levels, the error increases approximately lin-
early, showing the robustness of the algorithm.

4.2 Real-world data

Figure 1 shows on the left a real-world image and on the
right the reconstruction obtained from it. Fifty nine (59)
points and 50 planes and nine ratios of lengths were given.
The matrix � has 57 columns. If one reprojects the esti-
mated 3D points in the image, the noise level with respect
to the observed points is 29.5dB.

Figure 3 shows two indoor images taken from approxi-
mately the same point, but in more-or-less perpendicular di-
rections. The input consists in 61 points, 35 planes and one
known ratio of lengths : the distance from the point marked
“A” in the first image to that marked “A-prime” in the sec-
ond image is equal to that from point “B” (first image) to
point “B-prime” second image. No 3D point is visible in
both images. The error level of reprojected points with re-
spect to observed points is 42.9dB.

Figure 4 (left,middle) shows two outdoors image with
some overlap. Seventy-two (24 in the first image, 48 in the
second) points and 21 planes were identified. In order to ob-
tain a rigid reconstruction, it is necessary to use metric in-
formation : one assumes that the spikes on the left and mid-
dle wall stick out by the same amount. Without this knowl-
edge, the relative scale of the spikes and of the rest of the
scene would be undetermined. Figure 4 (bottom) shows the
reconstruction. The error level of reprojected points with
respect to observed points is 46.6dB.

5 Conclusions and future work

We have presented a method for 3D reconstruction from
one or more views that checks whether the input data is
coherent and sufficient to define a rigid reconstruction. It
could e.g. add versatility to an easy-to-use interactive re-
construction system such as [2, 5, 7].

It allows reconstruction from many images (like [6], but
one does not need to track points across images [Sec. 4.2]).
We have shown that using metric information increases the
versatility : we believe none of the presented real-world re-
sults could be obtained using other published methods.

Also, we have presented and benchmarked a method
for computing maximum likelihood estimates of vanishing
points.

There are many prospects for future development : one
could include constraints on U in the geometric informa-
tion; maximum likelihood estimation of the reconstruction
has also been implemented in the presented framework.

Credits : This work has been supported by grants PRAXIS /
BD / 19594 / 99 and project Camera EC FTMP Network ERB
FMRX-CT97-0127.
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