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Abstract

We present an attempt to determine whether the shape
of a generic central-projection camera, such as the eye of
an insect or a log-polar camera, can be determined from
two motion flows resulting from purely rotational motions
with non-collinear axes. Our first contribution is to write
the smooth non-parametric calibration problem as a differ-
ential equation. It is unclear at present whether this prob-
lem has unique solution, up to an orthogonal transforma-
tion. Our second contribution is a discretized version of this
smooth problem, for which we give a calibration algorithm
- a third contribution. Using this algorithm, we explore
numerically the properties of the discrete self-calibration
problem, giving some insight on the nature of the problem.
We show examples of successful self-calibration, but cannot
give a definite affirmative answer to the question in the title.

1. Introduction

Knowing the geometry of an imaging sensor is a critical
component of many computer vision tasks. Accordingly,
a large body of research has been devoted to this subject.
Most research deals with the common case of a projective
camera, in which pixel coordinates and Euclidean coordi-
nates in the image plane are related by a homography [6].
A sensor is then characterized by a mappingF from sen-
sor pixel coordinates (e.g. in[−1, 1]

2) to optic rays, i.e.
elements of the unit sphereS2. Most work on calibration
assumes a model in whichF is of the form

F (x) ∼ K

[
x
1

]

, (1)

∗The authors are thankful for the detailed reviews and for thesupport
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where K is an upper triangular matrix and∼ denotes
collinearity. Hartley [5] shows that such a projective camera
can be calibrated from two finite rotations.

The model in Eq. (1) can be improved to deal with ra-
dial distortion, by considering that pixel and Euclidean co-
ordinates are related by a polynomial or rational fraction
mapping [9, 7]. The calibration of other sensors, such as
catadioptric cameras [2, 3] has also been considered. All
these approaches consider parametric mappings from pixel
to Euclidean coordinates.

Our work differs from these approaches by considering
sensors where the map from pixel coordinates to Euclidean
coordinates may be any diffeomorphismF , rather than a
mapping from a more restricted class. The only constraint
are thus smoothness of the mapping, and the existence of a
central projection point.

The increased availability of such generic sensors has
motivated research on their self-calibration. Like the
present work, recent results [13, 16, 11, 14, 12] concern
known types of motion: pure translations or rotations, finite
or infinitesimal.

In this paper, we focus on the case of two motion flows
(infinitesimal motions) [8], corresponding to pure rotational
motions of the camera around two non-collinear axes pass-
ing through the center of projection. Given two flows like
that in Fig.1 right, we try to determine a mapping from the
image plane into itself (for example the one at the left of
the figure) such that the flow, transformed into the coordi-
nate system defined by the mapping (middle of the figure),
is compatible with a pure rotational motion.

Our main contribution is the novel formulation of the
problem of calibrating a generic central projection sensor
from two flows, together with an algorithm to solve it. With
respect to [12] we get a Euclidean (vs. projective) calibra-
tion from two (vs. three) dense (vs. sparse) flows. With re-



spect to [14], we our algorithm uses information from two
(vs. three) motions only.

2. Notation and smooth problem formulation

We choose to represent a sensor, i.e. a mapping from
the oriented1 projective plane [15] to itself, by a diffeo-
morphismF : R

3 → R
3 s.t. for all λ > 0, and for all

point X represented by its homogeneous coordinates, one
hasF (λX) = λF (X) and‖F (X)‖ = ‖X‖. One ad-
vantage of this sensor representation is that the Euclidean
velocity induced by an angular velocityω ∈ R

3 is simply:

ω × F (X) .

We will plainly call a mappingF “a sensor”.
The input for our problem consists in two vector fields

expressed in sensor coordinates, which we will represent
by two smooth functionsV1, V2, definedR

3 → R
3 s.t.

Vi (X)
⊤

X = 0 andVi (λX) = λVi (X) for all X ∈ R
3

andλ ∈ R
+. That is, theVi are vector fields on the unit

sphere. In order to represent a 2D vector fieldv defined on
[−1, 1]

2 by a 3D vector fieldV (we omit the indexi when
considering a single field), we use the usual homogeneous
coordinate mappingT

T (x) =
1√

1 + x⊤x

[
x
1

]

(2)

from R
2 to the upper half-unit sphere. By chain-

differentiation, one easily sees that the fieldsV andv are
related by

V (T (x)) = DxT (x) v (x) . (3)

Other similar relations between velocities expressed in dif-
ferent coordinate systems will be used below, e.g. in
Eqs. (4, 5).

Going back to our calibration problem, we know that
there exist angular velocity vectorsω∗

1 , ω∗
2 ∈ R

3, distinct
and nonzero and a sensorF ∗, s.t. for allX , the following
equalities hold

DXF ∗ (X) · V1 (X) = ω∗

1 × F ∗ (X) and

DXF ∗ (X) · V2 (X) = ω∗

2 × F ∗ (X) .

These equations relate velocities expressed in Euclidean co-
ordinates (rhs) with velocities in sensor coordinates (Vi).

Question 1: What is the set of triplets(ω1, ω2, F ) consist-
ing of two distinct nonzero vectors ofR

3 and a sensor,
s.t., for allX ∈ R

3, one has

1It is necessary to use the oriented projective plane, since asensor may
span more than one hemisphere.

DXF (X) · V1 (X) = ω1 × F (X) , and (4)

DXF (X) · V2 (X) = ω2 × F (X) . (5)

The answer to this question is given in [12]: the set con-
sist only in

S =
{
(Rω∗

1 , Rω∗

2 , R ◦ F ) |R is3 × 3 and, R⊤R = I3

}
,

(6)
where I3 is the identity matrix. That is, the solution
(ω∗

1 , ω∗
2 , F ∗) is unique up to an orthogonal transformation.

It is clear that one cannot get a smaller solution since, if
ω1, ω2 andF solve Eqs. (4, 5), then, by virtue of the rela-
tion (Rω) × (RF ) = R (ω × F ), one hasR · DXF (X) ·
Vi (X) = (Rωi) × (RF (X)), so thatG = R ◦ F and
ω′

i = Rωi also solve Eqs. (4, 5), for any orthogonal trans-
formation (identified with an orthogonal matrix)R.

This indeterminacy allows to restrict our attention, with
no loss of generality, to solutions of the formω1 =
[0, 0, θ1] andω2 = [0, γ1, γ2], for some unknownθ1, γ1

andγ2.
Question 1 is about calibrating from flows observedev-

erywhereon the sphere. In practice, few sensors are truly
omnidirectional and it is more realistic to ask whether two
flows, observed only on a “little part” of the sphere, allow
to calibrate a sensor.

Question 2: Same as Question 1, but assuming that theVi

andF are only defined on a setO that is a simply con-
nected open set on the unit sphere.

In this paper, we do not attempt to answer this question by
a proof, but instead:

1. formulate Question 2 as a question about the solutions
of a differential equation.

2. Present a discrete analogue to the smooth calibration
problem.

3. Explore numerically the properties of Question 2 in the
discretized model.

4. Propose an algorithm to solve the discrete problem and
show its results on synthetic data.

Having defined our objectives, we may now present the dif-
ferential formulation of Question 2.

3. Differential formulation

To re-state the problem in terms of differential equations,
we expressDXF as a function ofF , of theVi and ofωi.
This is done by exploiting properties ofF and the relations
betweenF and theVi.
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Figure 1. Left: The disposition of pixels in the Euclidean plane. A pixel is located at each vertex in the grid. Middle: theflow as it occurs
in the Euclidean image plane. Right: the flow as it is observedin pixel (sensor) coordinates.

First, by the homogeneity properties ofF , F (λX) =
λF (X), one gets the (column) vectorial equation:

DXF (X) · X = lim
h→0

F (X + hX) − F (X)

h
= F (X) .

(7)
Then we join this to the two (column) vectorial equations (4,
5), and obtain the matrix equation:DXF [V1, V2, X ] =
[ω1 × F, ω2 × F, F ]. Right-multiplying each side by the
inverse of[V1, V2, X ] (wherever it may exist) yields the
nonlinear equation

DXF = [ω1 × F, ω2 × F, F ] · [V1, V2, X ]
−1

, (8)

that relatesDXF to F , Vi andωi, as desired. This equation
holds in all points inO whereV1 andV2 are linearly inde-
pendent, that is, in all pointsX in O s.t.F (X) does not lie
on the plane formed by the optical center(0, 0, 0) and the
axesω1, ω2. Question 2 can now be formulated as:

Question 2´: Given V1 andV2, does there exist values of
ω1, ω2 and a sensorF that solves Eq. (8) and under
what conditions is this sensor uniquely determined (up
to an orthogonal transformation) by theωi?

This paper addresses neither this last question nor Ques-
tion 2 on theoretical grounds. Neither does it attempt to
integrate Eq. (8) locally numerically. Instead, we turn to
practical ways of determining globallyω1, ω2 andF that
solve equations (4, 5).

4. Discrete formulation

In this section, we show how to estimate the sensor ge-
ometry from two flows generated by purely rotational mo-
tions of the camera. The method described here relies
mostly on linear algebra. We also give a glimpse of a
method that attempts to solve the calibration in the least-
square sense, in image coordinates.

We assume that vector motion valuesvi
m,n, i ∈ {1, 2},

m ∈ {1, . . . , M}, n ∈ {1, . . . , N} have been observed
on a grid of pointsxm,n of the sensor image plane and we
have mapped these values to 3D vector motionsV i

m,n, us-
ing Eq. (2) and (3). In this section, we will representF
by a3 × MN matrix, written “F ” too, where each column
represents the value ofF at a 3D pointXm,n on the unit
sphere:

F = [F (X1,1) , F (X2,1) , . . . F (XM,N )] ,

so that each column ofF has unit norm. In addition, the
solutionsF that we seek has full rank (i.e. rank three), since
the sensor is a diffeomorphism.

4.1. “Linear” solution

In the finite element model ofF , we approximate
DXF at a grid pointXm,n (not on the border) by solv-
ing the relationsDXF (Xmn) (Xm+1,n − Xm−1,n) =

F (Xm+1,n)−F (Xm−1,n)+O
(

‖Xm+1,n − Xm−1,n‖2
)

,

DXF (Xmn) (Xm,n+1 − Xm,n−1) = F (Xm,n+1) −
F (Xm,n−1) + O (‖Xm,n+1 − Xm,n−1‖) and
DXF (Xmn) .Xmn = F (Xmn), which yields the
finite difference scheme

DXF (Xmn) ≃
[Fm+1,n − Fm−1,n, Fm,n+1 − Fm,n−1, Fmn]

[Xm+1,n − Xm−1,n, Xm,n+1 − Xm,n−1, Xmn]
−1

.
(9)

At border point, the symmetric difference is replaced by for-
ward or backward differences, which are less accurate. To
isolateF in Eq. (9), we write

DXF (Xm,n) ≃ FKm,n,

whereF = [F1,1, F2,1, . . . FM,N ] andKm,n holds the co-
efficients of Eq. (9). The relations (4, 5) between the ob-
served flow and the 3D motion thus become, omitting the



superscript indexi, FKm,nVm,n = SωFm,n. Grouping
all the MN × 1 vectorsKm,nVm,n into a single matrix
K = [K1,1V1,1, K2,1V2,1, . . . , KM,NVM,N ], one obtains
the relation

FK = SωF, (10)

whereSω, sometimes written[ω]
×

, is the Rodrigues ma-
trix of ω. Note that it would be more correct to write
FK ≃ SωF, since the finite differencing embedded inK
induces some approximation error, even when the values
Vm,n verify Eq. (4) (or 5) exactly. Note also that, ifF is
linear, then Eq. (10) holds exactly. Since the only linear
mappings that preserve the unit sphere are orthogonal trans-
formations, Eq. (10) holds exactly holds only for sensors
that are orthogonal transformations.

Since F can only be estimated up to an orthogonal
transformation, we can, without loss of generality, assume
that the axis of the first rotation is of the formω1 =
[0, 0, θ1] and that of the second rotation is of the form
ω2 = [0, γ1, γ2], for some unknownθ1, γ1 andγ2. The
constraints from which we wish to estimateF , θ1, γ1 and
γ2 are thus:

FK1 =





0 −θ1 0
θ1 0 0
0 0 0





︸ ︷︷ ︸

[ω1]×=S1

F and (11)

FK2 =





0 −γ1 γ2

γ1 0 0
−γ2 0 0





︸ ︷︷ ︸

[ω2]
×

=S2

F. (12)

Our problem is thus, given theKi, computed from the
Vi, to determine theθ1, γ1 andγ2 for which Eq. (11and12)
admit a solutionF , or, equivalently, theθ1, γ1 andγ2 for
which the nullspaces of the3MN × 3MN matrices

L1 =
(
K⊤

1 ⊗ I3

)
− (IMN ⊗ S1) and

L2 =
(
K⊤

2 ⊗ I3

)
− (IMN ⊗ S2)

have a non-empty intersection - preferably of dimension
one. Our problem is thus different from solving a system
“AX + XB = 0”, since we do not know “A” -in our case,
the Rodrigues´ matrices- entirely.

In order to solve this problem, we tailored an algorithm
in two steps, plus a third refinement step. These steps are
now described:

4.1.1 Determining the row span ofF from the Ki

First, we may determine the third row ofF : from the
third row of Eq. (11), one sees that the third row ofF =

[f1, f2, f3]
⊤ belongs to the nullspace ofK⊤

1 . Since, in
practice,K⊤

1 has corank one, the third row ofF , f⊤
3 , is

given, up to a scale factor, by the “last” left singular vector
of K1. Then, the relationf⊤

3 K2 = −γ2f
⊤
1 gives usf1,

up to a scale factor. Finally,f⊤
1 K1 = −θ1f

⊤
2 yields f2,

up to a scale factor. The row span ofF (i.e. the span of
F⊤) being that of these scaled versions of its rows, we are
in measure to compute spanF from theKi and represent it
by a3 × MN orthogonal matrixU .

Note that another estimate can be computed by exchang-
ing the roles ofK1 andK2 and that these estimates do not
necessarily agree. The two estimates can be merged by ad-
hoc means.

4.1.2 Determiningθ1, γ1 and γ2 from the row span of
F .

If U is an orthogonal matrix that forms a basis of the row
span ofF , thenF can be writtenF = AU , for some in-
vertible matrixA. Eqs. (11 and 12) can then be written
AUKi = SiAU , which impliesUKiU

⊤ = A−1SiA, so
thatUKiU

⊤ is similar toSi and its eigenvalues are thus0
and±i ‖ωi‖.

Computing the eigenvalues ofUKiU
⊤ thus yields esti-

mates of|θ1| and
√

γ2
1 + γ2

2 . In practice, ifU is inexact,
the matrixUKiU

⊤ may have three real singular values, in
which case our method cannot estimate the corresponding
angle. This is a similar problem to that of [5] and [17], with
the difference that, due to the nature of the matrix, this oc-
curs much more easily and, in practice, our computations
are extremely sensitive to noise.

Once we have|θ1| and
√

γ2
1 + γ2

2 , and due to the in-
herent ambiguity in the problem we address, we may re-
strict ourselves to the caseθ1 > 0, γ1 = ‖ω2‖ cos (τ) and
γ2 = ‖ω2‖ sin (τ), for someτ ∈ [−π/2, π/2[. Also note
that, if one knowsθ1 and theγi, then the relation

[ (
UK⊤

1 U⊤ ⊗ I3

)
− (I3 ⊗ S1)(

UK⊤
2 U⊤ ⊗ I3

)
− (I3 ⊗ S2)

]

︸ ︷︷ ︸

B(τ)

vec(A) = 09×1,

(13)
holds, where vec(A) is the vector of the 9 elements ofA
[10]. Moreover, in practice,B (τ) is only rank-deficient for
the correct value ofτ , and then by one. Thus,τ can be
estimated by minimizing the least singular value ofB (τ),
on the interval[−π/2, π/2[, a simple 1D minimization task.
Figure2 shows typical curves of the two smallest singular
values ofB (τ), for τ ∈ [−π, π]. In addition to clearly
displaying the symmetry of the curves, this figure also con-
firms that the two smallest singular values are distinct, so
that there is a uniqueA (up to scale) that solves Eq. (13).
Obviously, the aspect of the curve changes when different
motions and sensors are used, but these properties persist.
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Figure 2. The two smallest singular values ofB (τ ) as a function
of τ , computed over[−π, π]. The singular values clearly take the
same value forτ andπ − τ . Red dotted curves: two smallest sin-
gular values ofB (τ ) computed for the true values of‖ωi‖ andU .
Green smooth curves: singular values computed with the values of
‖ωi‖ andU estimated in Sec.4.1.2. The vertical lines indicate the
positions of the minima of the smallest singular value.

Note that this also yieldsA. However, we observed that
the estimateF = AU is very distorted, so that the final
estimate ofF is given by the following method:

4.1.3 RefiningF

We now show how to refine the estimate ofF . Fixing, in
Eqs. (11, 12), F to the value obtained by the above method,
yields equations that are linear inθ1, γ1 andγ2. We obtain
new estimates of these values by solving these equations in
the least-squares sense. We then re-compute the matrices
L1 andL2 with these new values ofθ1, γ1 andγ2. Finally,
we re-computeF , up to a scale factor, as the nullspace of

the matrix
[
L⊤

1 L⊤
2

]⊤
, estimated by the SVD of this ma-

trix. We found that, due to the conditioning of theLi, this
is preferable to estimating the nullspace of the smaller ma-
tricesL⊤

1 L1 + L⊤
2 L2.

Note that the methods of this and the previous section do
not guarantee that the columns ofF will all have the same
norm. In this paper, we normalize each column as a final
computation step.

Another limitation is that the sensorF may “cross it-
self,” i.e. not correspond to an injective mapping, as will be
illustrated in the next section.

4.2. Numerical experiments

In this section, we consider four types of20×20 sensors.
First, theidentity sensorF (X) = X , displayed in Fig.3,
top, left; we will also use its variant, theorthogonal sensor,
F (X) = RX , for some random orthogonal matrixR. Sec-
ond, in Fig.3, top, right, thehomography sensordefined by
F (X) ∼ AX , whereA is a random3 × 3 matrix. Third,
the sine sensorshown in Fig.3, bottom, left, with pixels
disposed at positions

Fs (x, y, 1) ∼
(

x ,
1

2
y +

1

2
sin

(
3πx

4

)

, 1

)

,
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Figure 3. The two types of sensors that we consider.

wherex andy take regularly-spaced values in the interval
[−1, 1] (again, means equality up to a positive scale factor).
Finally, thelog-polar sensorshown in Fig.3, bottom, right,
which is defined by the mapping

Fl (ρ, φ, 1) ∼
(

10
(ρ−1)

2 cos (πφ) , 10
(ρ−1)

2 sin (πφ) , 1
)

.

where the values ofρ andφ are regularly spaced in the in-
terval[−1, 1].

All the pairs of flows used here correspond to randomly
chosen rotation axesωi forming an angle of2π/3 (other
values give similar results) with norm drawn randomly and
uniformly in [0.15, 0.30].

4.2.1 Unicity of the solution to Eq. (11, 12)

In order to determine whether the least-squares solu-
tion F , θ1, γ1, γ2 to Eqs. (11, 12) is unique, we

study the two smallest singular values of
[
L⊤

1 , L⊤
2

]⊤
,

as functions of (θ1, γ1, γ2), in the neighborhood of
the true values(θ∗1 , γ∗

1 , γ∗
2 ). The solution will be

unique if 1) the smallest singular valueσ1 is dis-
tinct from the second smallestσ2 and 2) the mini-
mum of the smallest singular valueσ1 is isolated. We
inspect these three-dimensional functionsσ1 (θ1, γ1, γ2)
and σ2 (θ1, γ1, γ2) by looking at three of their one-
dimensional slices: si,1 (ε) = σi ((1 + ε) θ1, γ1, γ2),
si,2 (ε) = σi (θ1, (1 + ε) γ1, (1 + ε) γ2) and si,3 (ε) =
σi (θ1, γ1 − εγ2, γ2 + εγ1). In geometric terms,si,1 (ε)
shows the effect of a perturbation of the angular velocity
ω1 parallel to itself,s2,1 shows the effect of a perturbation
of ω2 parallel to itself, andsi,3 (ε) shows the effect of a
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Figure 4. Smallest singular value of
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L⊤

1 , L⊤

2

˜

, whenθ1, γ1 and
γ2 are perturbed in the three directions described in the text.Top:
with a sine sensor. The steepest curve iss1,j (ε), the second steep-
est iss2,j (ε), while s3,j (ε) has a wide, slightly concave, floor
around the true value. Bottom: with an orthogonal sensor.s3,j (ε)
reaches a (shallow) minimum in 0.

perturbation ofω2 orthogonal to itself, while staying in the
(ω1, ω2) plane.

We do not need to plot thes2,j (ε) here, as their values
are much greater than that of thes1,j (ε). This indicates
that, for fixedωi, the smallest singular value is isolated, so
there is a unique (up to scale)F that solves Eqs. (11, 12) in
the least-squares sense.

Figure4, top, shows the curves ofs1,j (ε), 1 ≤ j ≤ 3,
for ε ∈ [−1/4, 1/4], computed for a “sine” sensor, while the
bottom curves correspond to an orthogonal sensor, forε ∈
[−0.06, 0.06]. The results of this experiment do no vary
greatly with different sensors and motions. One important
fact showed by these curves is that the minima ofs11 (ε) and
s12 (ε) are sharply defined, indicating that the amplitude of
the angular velocities‖ωi‖ are well defined by the matrices
L1 andL2, at least near the true values. This conclusion can
also be reached analytically.

The most important fact in this figure is thats1,3 (ε) has
a wide floor around0. For the sine sensor, this function is
actually concave in 0, while it is convex for the orthogonal
sensor. In both cases, the extreme flatness indicates that the
angle betweenω1 andω2 is, at best, poorly determined by
Eqs. (11, 12).

The extent to which this indeterminacy is caused, on the
one hand, by numerical approximations in the matricesKi

and their ill-posedness and, on the other hand, by a genuine
ambiguity is unclear.

To summarize the results experiment, it shows that the

angular velocities‖ωi‖ are well defined by the matricesL1

andL2, while the angle between the axes is not, due to the
flat region around the minimum ofs1,3 (ε). Since this flat
region directly challenges our ability to estimate theγi ac-
curately, determining the factors that influence the extentof
this floor appears as important subject for future investiga-
tion.

Having presented an important limitation to the estima-
tion of the angular velocities, we now show how the algo-
rithm presented in the previous section behaves, in spite of
this limitation.

4.2.2 Calibration experiments

We now present results of the steps described in Secs.4.1.1-
4.1.3. The first row of Figure5 shows the flow as it appears
in the Euclidean image plane. The second row shows the 2D
projection of the result of applying the steps in Secs.4.1.1
and4.1.2, superposed with the true sensor. Since these re-
sults are obtained up to an orthogonal transformation, we
align the true and estimated sensor by 3D procrustes [1].
The third row shows the result of the method of Sec.4.1.3.

The first column of Figure5 shows that the methods
of Secs.4.1.2and4.1.3both yield the exact sensor in the
case of the identity sensor, for which differentiation by fi-
nite differences is exact. The same can be observed with
any orthogonal sensor. The success of our method in these
cases strongly points towards the unicity of the solution of
Eqs. (11) and (12).

The second column shows that the reconstruction be-
comes inexact when the sensor is not an orthogonal trans-
formation, but just “collinear” to a general homography.
The quality of the reconstruction displayed here is typical
of what is obtained when reconstructing a “homography”
sensor.

The third column shows that the reconstruction becomes
less precise in the case of the “sine” sensor - the reconstruc-
tion displayed here is typical of what is obtained when re-
constructing a “sine” sensor. It is not uncommon that the
estimation of the sine sensor fails.

The last column shows that the reconstruction becomes
less precise still in the case of the “log-polar” sensor - the
reconstruction displayed here is a particularly good-looking
one. It is common that the estimation of the log-polar sensor
fails.

Comparing the second and third rows plainly shows that
the method of Sec.4.1.3yields better results than that of
Sec.4.1.2.

In particular, the estimated sine and log-polar sensors
shown in the second row do not correspond to diffeomor-
phisms, as they have overlapping sections.
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Figure 5. Top row: the flows from which the sensor geometry will be computed, displayed in the Euclidean image plane. The second and
third rows show, respectively, the result obtained by the methods in Sec.4.1.2and in Sec.4.1.3. The true sensor shape is superposed, for
comparison. Each column shows the data for one of the four tested sensor types.

4.2.3 (Hyper) Sensitivity to noise in the observations

When one adds even tiny amounts of noise to the observa-
tions, our method ceases to produce meaningful results. It
will occasionally produce recognizable results with 50DB
of noise, i.e. when the error in the observations has a stan-
dard deviation of approximately 0.3% of the flow ampli-
tude, a level much smaller than real-world levels. Figure6
shows the output of the method of Sec.4.1.2(left), of that
of Sec.4.1.3 (middle) and of a method which minimizes
the sum of squared residues in image space over all possi-
ble sensor geometries and angular velocity vectorsωi (left),
and gives a clearly superior results.

We do not describe this last method here, because it is
based on totally different principles and for lack of space.

5. Conclusions

Without answering Questions 2 and 2’ by mathemati-
cal proof, we have presented numerical results that provide
some insight on the self-calibration problem. These results
could be coherent with either a unique solution (up to an or-
thogonal transformation), or a continuum of solutions. Al-
though answering these questions in a definitive manner still
appears as a major challenge, the fact that orthogonal sen-
sors are perfectly reconstructed by our method draws a case
for the unicity of the solution, at least for that type of sensor
and for the conditions of our experiments.

We have presented what is, to our knowledge, the first
algorithm to densely calibrate a non-parametric sensor from
two motion flows generated by purely rotational motions.
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Figure 6. A successful reconstruction in the presence of noise at a level 50DB. From left to right, the results of the method of Sec.4.1.2,
Sec.4.1.3and of a method that minimizes the squared residues in image space.

We have presented its results together with its limitations,
which may be inherent to the problem at hand.

In the process, we found some numerical evidence that
the ambiguity in self-calibrating from two motion flows in-
duced by pure rotations could be greater than just an orthog-
onal transformation. However, it remains unclear whether
this ambiguity is due to numerical approximations in the
matricesKi, or whether it is a genuine ambiguity. Be-
cause, in the absence of approximations in the matricesKi,
i.e. with the identity or other orthogonal sensors, the re-
construction is perfect, we believe the difficulty met by our
algorithm is due to the approximation in the finite difference
method and to ill-conditioning of the problem.

It would thus be interesting know whether precondition-
ing the matricesKi could improve the stability of the al-
gorithm. Certainly, the computation cost could be reduced
by using fast methods to compute the least singular values
and vectors of large sparse matrices [4]. Possible extensions
include using discrete elements, rather than a finite element
mesh. Also, adapting matricesKi to other sensor topologies
seems feasible. This could e.g. accommodate the cylindri-
cal topology of the logpolar sensor. An important improve-
ment would obviously be the possibility of using more than
two images.
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