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Abstract

We consider the problem of estimating the relative orien-

tation of a number of individual photocells -or pixels- that

hold fixed relative positions. The photocells measure the in-

tensity of light traveling on a pencil of lines. We assume that

the light-field thus sampled is changing, e.g. as the result of

motion of the sensors and use the obtained measurements

to estimate the orientations of the photocells.

We explore an information-theoretic and geometric ap-

proach: based on real-world data, we build a non-parametric

functional relation linking the information distance between

the data streams of two photocells, and the angular sep-

aration between the photocells. Then, given data streams

produced by arrays of pixels in similar conditions, we use

the functional relation to estimate the angles between pix-

els. Finally, we embed the estimated angles in the unit 3D

sphere to obtain the estimated layout of the array.

1. Introduction

When we look around or read a conference paper, we

only perceive the part of the visual stimulus that is relevant

to us. Our human visual system performs an abstraction of

the underlying optical and biological processes, of which

we are mostly unaware.

Computer vision also strives to only “perceive” the rel-

evant part, and performs an abstraction of the underlying

optical, electronic and computational processes. A success-

ful example is camera calibration, that allows to transform

distorted images into canonical perspective (or other) im-

ages. These images are better fit for higher-level processing

stages, by making abstraction of lens distortion, raw image

size and imager geometry. In a calibrated image, each pixel

(u, v) is mapped to a known 3D direction (x, y, z), and de-

termining that mapping is the task of calibration.

Calibration is typically bootstrapped by using some ba-

sic properties of the imaging system. In particular, in all

the cases that we are aware of, the local topology is known:

pixel (u, v) is a neighbor of (u + 1, v); the triplet (u, v),
(u + 1, v), (u + 2, v) is approximately aligned. Locally,

and for many practical purposes, an uncalibrated image looks

like a calibrated image. In particular, it is possible to per-
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form processing operations such as edge, extrema, corner

and feature localization on uncalibrated images, just as well

as on calibrated images.

This paper departs from traditional computer vision on

this point: we do not assume that pixels (u, v) and (u + 1, v)
are neighbors. In fact, we are given pixels indexed by a sin-

gle index n. Since such a camera is peculiar by the absence

of a-priori known topological information, it is only natural

to call it a discontinuous, or discrete camera.

The problem that we address may seem too general to

pertain to computer vision. Indeed, digital cameras are un-

likely to ever produce discontinuous images1. Yet we must

also consider the computation that occur in biological sys-

tems, where it is unclear how much of the geometry of

the sensor is known beforehand, and how much is deter-

mined by processing visual stimuli. We must also consider

robots equipped with arrays of photocells, and new visual

sensors [16] that may have variable geometry.

Our goal here is thus to determine the 3D direction pointed

by each pixel, under the assumption that pixels sample light

that travels along rays that intersect in a unique center of

projection. In the impossibility of performing local image

processing, traditional calibration techniques [20, 8] are out

of the question.

Less traditional non-parametric methods that assume a

smooth image mapping and smooth motion [11, 7] can ob-

viously not be applied either. By using controlled-light stim-

uli or known calibration, matches could be obtained, al-

lowing to use match-based non-parametric techniques [14].

In [4], a non-central projection sensor samples the light-

field in a discontinuous way: the response at each pixel

is the convolution of the lightfield with a possibly multi-

modal function; this “point-spread function” is only suf-

ficiently estimated to reconstruct images on a fixed plane,

and calibration is done with controlled stimuli. In this study

however, we wish to exclude known calibration objects and

other controlled stimuli.

It thus seems that we are left with statistical approaches.

The input data will consist in a stream of values x (i, t),
where the integer index i denotes the photocell or pixel, and

t, the time. Statistical properties of this stream will be ex-

ploited to determine the geometry of the sensor.

1Except in rare cases such as a SLR camera with a stereo adapter or

split mirror.
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Figure 1. A discrete camera consists of a number of photocells

(pixels) that measure the light traveling along pencil of lines. More

generally, one could consider that each photocell is characterized

by a point spread function defined on the 3D sphere.

1.1. Related work

Our approach to calibration is closely related to the work

of Pierce and Kuipers [12], who measure the dissimilarity,

or distance, between sensor elements that are not necessar-

ily light sensors. The elements are then embedded in a met-

ric space using metric scaling [9], which also determines the

dimension of the space. A relaxation method then improves

this embedding, so that the Euclidean distance between sen-

sor elements better matches the dissimilarity between the

sensor inputs. Getting very close to the problem addressed

in the present paper, the authors use this method to recon-

stitute the geometry of a rectangular array of visual sensors

that scans a fronto-parallel image.

Going further, Olsson et al. [10] use the information met-

ric of [1] as a more appropriate method to measure the dis-

tance between visual or other sensor elements. They also

show how visual sensors -the pixels of the camera of a mo-

bile robot- can be mapped to a plane, either using the method

of [12], or their own, that embeds sensor elements specifi-

cally in a square grid.

The works of Olsson et al. and of Pierce and Kuipers

are very interesting to computer vision researchers, but they

only give a glimpse of what sensor input encoding could do

for computer vision. In particular, the geometry of the em-

bedding space is either abstract or fixed to a grid, and lacks

a general connection to the geometry of the sensor. Filling

this gap is one of the motivations for the present work.

Since the present work exploits statistical properties of

the light-field of the world surrounding a light sensor, this

article is also related to research on the statistical properties

of real-world images. In that area, a model of image forma-

tion is used, but images, rather than sequences, are studied.

That research has put in evidence fundamental properties,

in terms of local, global and spectral statistics, of real-world

images, and found ways to exploit these properties for com-

puter vision tasks, such as classification [19], image restora-

tion [5] and 3D inference [13].

Although these results are of great interest, they are not

directly applicable in our case, first because we lack images

and because that research does not use temporal information

that is crucial to our work.

Moreover, these statistics are about images formed on a

planar image plane, which is hindrance in our case: first, we

do not want to exclude the case of visual sensor elements

that are separated by more than 180 degrees, such as the

increasingly popular omnidirectional cameras. Also, the lo-

cal statistical properties of perspective images depend of the

orientation of the image plane with respect to the scene, ex-

cept in special constrained cases such as the fronto-parallel

“leaf world” of Wu et al. [21]. Defining images on the

unit sphere thus appears as a natural way to render image

statistics independent of the sensor orientation, at least with

proper assumptions on the surrounding world and/or the

motion of the sensor.

1.2. Proposed approach

In the present work, we assume that the statistical prop-

erties of the data streams produced by pairs of sensor ele-

ments depends only the angular separation between the el-

ements. This assumption, when one considers the images

as observations of a random field defined on the sphere,

is equivalent [15] to assuming that the random field is ho-

mogeneous - we could say “anisotropic.” This assumption

clearly does not hold in an anisotropic world, unless the ori-

entation of the sensor is uniformly distributed amongst all

unitary transformations of the sphere. In terms of computer

vision and robotics, our assumption amounts to saying that

the sensor is randomly oriented, so that each photocell is

just as likely to sample the light-field in any direction.

The great practical utility of this assumption is that, as

a consequence, the statistical properties of a pair of data

streams generated by two photocells depend only on the an-

gle separating them. In this situation, one can envision es-

timating the angular separation from a measure of dissimi-

larity (information distance, Sec. 2.1) between the streams,

and this is precisely what we do (Sec. 2.5). In order to es-

timate angles from dissimilarity measures, we empirically

observe (Sec. 2) the relation between these two quantities.

We may then (Sec. 3.1) embed these angular estimates using

simple techniques from distance geometry [2]. The whole

process is outlined in Algorithm 1.

Finally, Section 4 presents some conclusions and a long

list of questions to be addressed by future research.

2. The relation between angular distance and

information distance

In this section, we recall the definition of information

distance [1]. We then study how the information distance

between two pixel signals is related to the angle formed by

the pixels, assuming a discrete camera moving indoors.



Algorithm 1 Procedure for estimating the geometry of a

discrete camera.

Input: Signals produced by N rigidly connected light sen-

sors at T time instants: x (i, t) , 1 ≤ i ≤ N , 1 ≤
t ≤ T . The light sensors are rigidly connected and

point towards unknown 3D directions X1, . . . , XN ,

Xi ∈ R
3, X⊤X = 1.

Output: Estimates of the directions X1, . . . , XN .

Algorithm:

1. Estimate the information distance dij between

the temporal signals x (i, .) and x (j, .), for each

1 ≤ i, j ≤ N .

2. Estimate the angular separations θij =
cos

(

X⊤

i Xj

)

.

3. Embed the angular separation in the 3D sphere:

find X1, . . . , XN s.t. X⊤

i Xi = 1, X⊤

i Xj =
cos (θij), 1 ≤ i, j ≤ N .

2.1. Information distance

Given two random variables x and y (in our case, the

values produced by individual pixels of a discrete camera)

taking values in a discrete set {1, . . . , Q}, the normalized

information distance between x and y is [1]:

d (x, y) = 2 − (H (y) + H (x)) /H (x, y) , (1)

where H (x, y) is the Shannon entropy of the paired random

variable (x, y), and H (x) and H (y) are the entropies of x
and y, respectively. It is easy to show that Eq. (1) defines

a distance over random variables and that it takes values in

[0, 1].2

We now explain how we study the relation between in-

formation distance and angular separation. For this purpose,

we consider a discrete camera with pixels separated by an-

gles ranging from 0.5 to 180 degrees.

2.2. Image sensor

It is convenient to take a discrete camera consisting of

pixels located on a plane, separated by geometrically in-

creasing angles, spanning half a great circle (180◦) of the

3D sphere (Fig. 2, top). The smallest gap is half a degree.

We simulate a discrete camera with known Euclidean

geometry by sampling a calibrated panoramic image with

unique projection center at fixed locations. Images are ac-

quired by a VStone catadiopric camera consisting of a per-

spective camera fitted to a hyperbolic mirror. This system

2The normalized distance is more convenient than the information dis-

tance d (x, y) = 2H (x, y) − H (y) − H (x), which is bounded by

log
2

Q.

is modeled as single projection center camera [6] with a

360◦ × 210◦ field of view with a ∼ 45◦ blind spot at the

south pole. The mirror occupies a 453 × 453 pixel region

of the image. Image values at non-integer pixel locations

are obtained by bilinear interpolation. The angular separa-

tion between neighboring pixels in the panoramic is usually

slightly smaller than 0.5◦, so that, in the “tighter” part of

the discrete camera layout, there exists a slight linear de-

pendence between the values of consecutive pixels. Also,

some mild vignetting occurs3, but, except for these minor

inconveniences, simulating a discrete camera by an omni-

directional camera presents many advantages: no other spe-

cialized hardware is needed and each omnidirectional image

can be used to simulate many discrete camera “images”, as

in Fig. 2, bottom. With respect to perspective cameras, the

available field of view allows to study very-wide-angle dis-

crete cameras.

2.3. Data acquisition

The camera is hand-held and undergoes “random” gen-

eral rotation and translation, according to the author´s whim,

while remaining near the middle of the room, at 1.0 to 1.8

meters from the ground. We acquired three sequences con-

secutively, in very similar conditions and joined them in a

single sequence totaling 1359 images, i.e. approximately 5

minutes of video at ˜4.5 frames per second.

To simulate the discrete camera, we randomly choose an

orientation (i.e. half a great circle) such that all pixels of the

discrete camera fall in the field of view of the panoramic

camera. Figure 2 shows two such choices of orientations.

For each choice of orientation, we produce a sequence of

samples x (i, t), 1 ≤ i ≤ 31, 1 ≤ t ≤ 1359, where each

x (i, t) ∈ {0, . . . , 255}. Choosing 100 different orienta-

tions, we obtain as 100 discrete sensors and 100 arrays of

data xn (i, t), 1 ≤ n ≤ 100.

It is convenient to re-quantize the signals from 255 gray-

levels to a more parsimonious representation with Q < 255
bins. As in [10], we choose bins that maximize the entropy,

i.e. bins that contain equal numbers of values xn (i, t), 1 ≤
i ≤ 31, 1 ≤ t ≤ 1359 and 1 ≤ n ≤ 100.

Considering any pair of pixel (indices) 1 ≤ i, j ≤ 31,

the angular separation θi,j is the main object to estimate by

our method, and it is known in our test setup. We show in

Sec. 2.4 how to compute the information distance dn (i, j)
between signals xn (i, t) and xn (j, t), 1 ≤ t ≤ 1359 and, as

a result, get a dataset of angle-distance pairs (θi,j , dn (i, j)),
1 ≤ n ≤ 100, 1 ≤ i, j ≤ 31, which we call D:

D = {(θij , dn (i, j)) | 1 ≤ i, j ≤ 31, 1 ≤ n ≤ 100} . (2)

We will then use this dataset in Section 2.5 to build a

3One may verify that the average and standard-deviation of pixels are

not exactly uniform in the image.
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Figure 2. Top: Geometry of a discrete camera consisting of a pla-

nar array of thirty one (31) pixels, spanning 180◦ in the plane. The

first two pixels are separated by 0.5◦, the separation between con-

secutive photocells increases geometrically (ratio ≃ 1.14), so that

the 31st photocell is antipodal with respect to the first.

Bottom: Two instances of the linear discrete camera, in-

serted in an omnidirectional image. Pixels locations are in-

dicated by small crosses connected by white lines.

functional relation that allows to estimate the angular sepa-

ration θij from the information distance d (i, j).

2.4. Estimating the information distance

Caution should be taken when estimating the informa-

tion distance (1) from finite samples x (t), y (t), 1 ≤ t ≤
T : it is relatively common knowledge that replacing un-

known probabilities px (q) by sample frequencies p̂x (q) =
|{t|x (t) = q}| /Q4 in the expressions of the entropy results

in biased estimates Ĥ (x), with expectancy

E
{

Ĥ
}

= H −
Q − 1

2T
+

1 −
∑

q
1

px(q)

12T 2
+ O

(

1

T 3

)

. (3)

4|.| denotes the set cardinal.
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Figure 3. Dependency of the information distance d (i, j) on the

angular separation θij . The height of each plotted point is the av-

erage of 100 estimates of the information distance between signals

x (i, 1 ≤ t ≤ 1359) and x (j, 1 ≤ t ≤ 1359). The abscissa is the

angular separations between pixels i and j of the discrete camera.

Each curve corresponds to a different number Q of quantization

bins. The quantization bins are all taken to have weight 1/Q.

Top: Information distances computed with the first-order

bias correction term of Eq. (3) removed. Bottom: Distances

computed without correction.

This bias in turn causes a bias in the information distance

estimates in Eq. (1). While it is easy to correct for the first

bias term, (Q − 1) /2T , correcting for the other terms is

more delicate [17]. In the present work, we only correct the

first bias term and we show below the benefits of doing so.

It should also be noted that the second term in Eq. (3) has

a variance that increases with the number Q of quantization

bins, so that it is also important to choose Q appropriately.

Figure 3 shows the average information distance Eq. (1)

between the outputs of sensors with known angular separa-

tion. Each plot holds four curves, corresponding to Q = 2,

4, 16 and 64. The top plot uses bias correction, whereas the

bottom plot does not.

The curves in the top plot are better grouped, showing

that, when bias reduction is applied, the information dis-

tance estimates depend less on Q. This is important if one

is interested in estimating properties of the information dis-

tance that depend on angular separation and on the ambient

light field, rather than on Q and T .
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Figure 4. When the signal sample is longer as here, the informa-

tion distance estimates are better behaved: here, a signal of length

T = 135900 frames is obtained by concatenating the signals used

in the previous experiment, and the information distance is com-

puted between pairs of signals. Here, the information distance is

computed without bias reduction. The values obtained with bias

reduction are very similar.

Another way to reduce the importance of Q, when esti-

mating information distance values, is to use longer signals.

The concatenation of the 100 signal arrays, where all sen-

sors have the same geometry, can be seen as a pseudo-signal

that is 100 times longer, corresponding to approximately 90

minutes of data.

Figure 4 shows that, for long enough signals, the distance

estimates are much better behaved, as they vary less on Q.

However, one also sees that the estimates obtained for large

Q require still longer signals. For angles smaller than 20◦,

the number of quantization bins, Q still influences to a large

extent the distance estimates.

The conclusion of these experiments is that adding the

first correction term in Eq. (3) to entropy estimates in Eq. (1)

is justified and beneficial, especially when only short se-

quences are available. One should note that correcting for

bias in the entropy estimates is certainly less important in

the situation of Olsson et al. [10], where the distance mea-

surements are embedded directly in an abstract space. Ob-

taining accurate information distance estimates is important

in our approach because our goal is to map information dis-

tance to angles. In the experiments below, we apply the

bias-correction term to entropy estimates, and use Q = 4.

2.5. Estimating angular separation from informa-
tion distance

Figures 3 and 4 also show one of the major issues that

appear when one wishes to estimate the angular separa-

tion between pixels from the information distance estimated

from their signals: for large angular separation, the infor-

mation distance reaches a value close to one (corresponding

to nearly independent signals) and remains nearly constant.

In this section, we study the statistical properties of angle-

distance pairs, with the goal of estimating the angle from

the information distance.

In the absence of a model linking the information dis-

tance to the angular separation, we take a nonparametric

approach. We estimate the probability density function of

the angular separation knowing the information distance,

P (θ | d) by applying standard Bayesian inference methods

to our dataset of angle-distance pairs D of Eq. (2).
We cover the space of angles [0, π] with 35 disjoint inter-

vals I1, . . . , I35 defined by angles5 0 < θ1 < . . . < θ34 <
π, and similarly cover the space of information distances
[0, 1] with 50 intervals J1, . . . , J50, defined by uniformly
spaced values 0.2 = d1 < . . . < d50 = 1. We then call
C (p, q) the number of instances of angle-distance pairs in
each rectangle: for any 1 ≤ p ≤ 35 and 1 ≤ q ≤ 50:

C (p, q) = |{(n, i, j) | θij ∈ Ip , dn (i, j) ∈ Jq}| . (4)

The expected value of C (p, q) is approximately

E (C (p, q)) ≃ P (d ∈ Jq | θ ∈ Ip)Cθ (p) ,

where Cθ (p) =
∑

q C (p, q) is the count of data points cor-

responding to θij ∈ Ip, and is known, since it is defined by

the geometry of our probe (shown in Fig. 2, top). Knowing

C (p, q) thus provides an estimate of P (d ∈ Jq | θ ∈ Ip).

All that is now needed, to get an estimate of P (θ ∈ Ip |
d ∈ Jq), is a prior for P (θ), which would be chosen in ac-

cordance to the knowledge about the angles that will be es-

timated. In our case, we simply take P (θ ∈ Ip) ∝ Cθ (p),
which is appropriate to estimate angles between pixels of a

sensor similar to that of Fig. 2. We thus use the estimate

P (θ ∈ Ip | d ∈ Jq) ≃
C (p, q)

Cd (q)
, (5)

where Cd (q) =
∑

p C (p, q).
Figure 5 shows the estimates of P (θ ∈ Ip | d ∈ Jq) graph-

ically, as a graylevel image. The black curve shows the ex-

pected value of this conditional p.d.f., which we use as the

estimate of θ knowing d.

In practice, for an information distance of (di−1 + di) /2,

the estimated angle is taken to be

θ̂ ((dq−1 + dq) /2) = E (θ | d ∈ Jq) ,

and the estimated angle at intermediate values is obtained

by affine interpolation from the nearest values.

Experimental validation

We now assess the quality of this estimate, by applying it to

a set of information distances and comparing the estimated

and true angles. In this experiment, the signals are obtained

in the same conditions -same image sequence, same sensor

shape, but different sensor orientations- as the dataset D.

5Again, we choose angles with geometrically increasing spacing.
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Figure 6. Statistical characterization of angles estimated from the

(estimated) information distance between the signals produced by

the pixels of a discrete camera. The angles are estimated by linear

interpolation of the values of the non-parametric model described

above. The first and third quartile define the top of each box. The

line in each box is located at the median estimated angle, and the

whiskers indicate the extrema.

Figure 6 shows that the estimated angles are fairly accu-

rate for angular separations smaller than 5◦, but degrades

sharply for greater values: around 10◦, a positive bias and

an increase in variability appears; starting at 30◦, estimates

“saturate” at the highest value in the non-parametric model.

3. Calibrating a discrete camera

Having seen how to estimate the angle between two pix-

els from the information distance between their respective

data streams, we now show how useful this method is for

estimating angles coming from different sensor shapes, and

subsequently for estimating the whole sensor geometry.

3.1. Embedding points in the sphere

We now consider the problem:

Problem 1) Spherical embedding problem: Given angle es-

timates θij , 1 ≤ i, j ≤ N , find points Xi on the unit

sphere, separated by angles approximately equal to

θij , i.e. X⊤

i Xj ≃ cos θij , for all i, j.

This problem can be reduced to the classical problem of

distance geometry [2]:

Problem 2) Euclidean embedding problem: Given distance

estimates Dij , 1 ≤ i, j ≤ N , find points Yi in a met-

ric vector space, such that, for all i, j, ‖Yi − Yj‖ ≃
Dij

Indeed, by defining an extra point Y0 = (0, 0, 0), and dis-

tances Dij =
√

2 − 2 cos θij , the mapping of the first prob-

lem to the second is immediate. Moreover, Schoenberg´s

classical algorithm for solving Problem 2, when applied to

Problem 1, simplifies to the rank-3 approximation of the

matrix C with terms Cij = cos θij . In order to solve Prob-

lem 1, we thus use the algorithm:

1. Compute the matrix C with terms Cij = cos θij , 1 ≤
i, j ≤ N .

2. Compute, using the SVD decomposition, the rank-3

approximation C̃ = UU⊤ of C, where U is N × 3.

3. Define Xi = (Ui1, Ui2, Ui3) / ‖(Ui1, Ui2, Ui3)‖.

One should note that this very simple algorithm is not op-

timal in many ways. In particular, it does not take into ac-

count that the error in the angles θij is greater in some cases

than in others.

3.2. Sensor calibration

We now evaluate the results of this very simple algo-

rithm on data produced by the angle-estimating method of

Sec. 2.5. For this purpose, we produce sequences of pixel

signals in the same conditions as in Sec. 2.3, except that the

sensor shape is different. The information distance between

pixels is then estimated from these signals, the angular sep-

aration between the pixels is estimated, and the embedding

method of Sec. 3.1 is applied to these angular estimates.

Figure 7 shows the results of the reconstruction, when

the pixels lie on a triangular grid of the image plane, scaled

so that the angular diameter of the whole discrete camera is

5◦ (left), 10◦ (middle) or 20◦ (right). The lines connecting

photocells have no purpose other than illustration.

These results are typical results of what researchers re-

producing our method may encounter. It is easy to see that
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Figure 7. True and estimated pixel layouts of a discrete camera. To estimate the layout, each pixel was sampled 1359 times. The information

distance between pairs of pixels was estimated from these values, and converted to angular estimates using our non-parametric model. The

angular distances were then embedded in the sphere. For visualization, they are aligned by the usual procrustes method, mapped to the

plane by projective mapping with unit focal length, and line segments indicate the original pixel neighborhood relations.

for small-diameter discrete cameras, the estimated shape is

pretty well determined by the information distance between

the pixel streams, whereas, when the angular diameter in-

creases, the noise in the estimated angles gradually over-

whelms the embedding algorithm.

Figure 8 shows the results of the reconstruction, when

the pixels lie on a 10 × 10 square grid of the image plane,

scaled so that the angular diameter of the whole discrete

camera is 5◦ (left) or 10◦ (right). This last grid is less good

than typical, the usual outcome having an aspect closer to

that of Fig. 7 left and middle.

These preliminary results -we have not performed ex-

tensive benchmarking of the complete calibration method-

point towards the necessity of a more performant spherical

embedding procedure, in order to better estimate the geom-

etry of wide-angle nonparametric cameras. It is likely that

an iterative refinement procedure would improve the final

results. In particular, an embedding method is needed that

can cope with unequal errors in the input. Such methods ex-

ist [18, 3] for Euclidean embedding, and could be adapted

to the case of spherical embedding.

4. Discussion

We have presented the proof-of-concept for the estima-

tion of the geometry of a discrete array of light-sensitive

elements. The presented method is based on the exploita-

tion of properties of the ambient light-field in a man-made

environment. We raised some of the issues that are bound

to be met by similar methods, in particular:

1. considering images defined on the sphere rather than

on the plane,

2. estimating information distance from finite samples,

3. building a functional relationship that links informa-

tion distance to angular separation, and

4. embedding angular estimates in a sphere.

On each of these points, some questions remain open for

further work: first, what is the effect of individual photo-

cells not having the same sensitivity, as is likely to happen

in practice? what are the effects of simulating a sensor with

an omnidirectional camera?

Concerning the estimation of information distance, it may

be useful to estimate directly the bias in information dis-

tance estimates, rather than simply applying bias-correction

to entropy estimates. In addition, our method assumes that

consecutive samples are i.i.d.; it would probably be benefi-

cial to acknowledge the temporal correlation of the signals.

Concerning image statistics, what are useful statistics of

images defined on the sphere? Modeling images as observa-

tions of homogeneous random processes, while the world is

not isotropic, is only correct if the orientation of the sensor

follows a uniform distribution. A more appropriate model

would probably acknowledge the existence of a dominant

vertical (and perhaps forward) direction.

Concerning embedding, what is a practical way of em-

bedding in the sphere angular estimates with greatly vary-

ing noise characteristics? Will one be able to adapt existing

methods, or will new methods be necessary?

The empirical observation of the strong relation between

angular separation and information distance is crucial to the

presented algorithm. Can one build a physical basis for

this relation, or at least link it to empirically known spec-

tral properties of real-world images?

Can the present approach be generalized to a non-central

camera? This would require determining statistical proper-

ties of the lightfield as a five-dimensional random field, and
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Figure 8. True and estimated pixel layouts of a discrete camera

consisting of photocells lying on a rectangular grid. Apart from

sensor shape, the experimental conditions are the same as in Fig. 7.

solving an altogether different embedding problem.

These questions are so basic that one can only guess at

the amount of work required to produce a mature method

for calibrating discrete cameras.
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