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Abstract. What does a blind entity need in order to determine the geometry of
the set of photocells that it carries through a changing lightfield? In this paper, we
show that very crude knowledge of some statistical properties of the environment
is sufficient for this task.
We show that some dissimilarity measures between pairs of signals produced by
photocells are strongly related to the angular separation between the photocells.
Based on real-world data, we model this relation quantitatively, using dissimilar-
ity measures based on the correlation and conditional entropy. We show that this
model allows to estimate the angular separation from the dissimilarity. Although
the resulting estimators are not very accurate, they maintain their performance
throughout different visual environments, suggesting that the modelencodes a
very general property of our visual world.
Finally, leveraging this method to estimate angles from signal pairs, we showhow
distance geometry techniques allow to recover the complete sensor geometry.

1 Introduction

This paper departs from traditional computer vision by not considering images or image
features as input. Instead, we take signals generated by photocells with unknown ori-
entation and a common center of projection, and explore the information these signals
can shed on the sensor and its surrounding world.

We are particularly interested in determining whether the signals allow to determine
the geometry of the sensor, that is, to calibrate a sensor like the one shown in Figure 1.
Psychological experiments [1] showed that a person wearingdistorting glasses for a
few days, after a very confusing and disturbing period, could learn the necessary image
correction to restart interacting effectively with the environment. Can a computer do the
same when, rather than distorted images, it is given the signals produced by individual
photocells? In this situation, it is clear that traditionalcalibration techniques [2, 3] are
out of the question.

Less traditional non-parametric methods that assume a smooth image mapping and
smooth motion [4] can obviously not be applied either. Usingcontrolled-light stimuli
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Fig. 1. A discrete camera consists of a number of photocells (pixels) that measure the light trav-
eling along pencil of lines.

or known calibration, matches could be obtained, allowing to use match-based non-
parametric techniques [5]. In this study however, we wish toexclude known calibration
objects and other controlled stimuli.

Our approach is inspired from the work of Pierce and Kuipers [6], who measure the
dissimilarity, or distance, between sensor elements that are not necessarily light sensors.
The elements are then embedded in a metric space using metricscaling [7], which
also determines the dimension of the space. A relaxation method then improves this
embedding, so that the Euclidean distance between sensor elements better matches the
dissimilarity between the sensor inputs. Getting close to the problem addressed in the
present paper, the authors use this method to reconstitute the geometry of a rectangular
array of visual sensors that scans a fronto-parallel image.

Going further, Olsson et al. [8] use the information distance of [9] as a more appro-
priate method to measure the distance between visual or other sensor elements. They
also show how visual sensors -the pixels of the camera of a mobile robot- can be mapped
to a plane, either using the method of [6], or their own, that embeds sensor elements
specifically in a square grid.

The works of Olsson et al. and of Pierce and Kuipers are very interesting to com-
puter vision researchers, but they cannot calibrate an arbitrary discrete camera, since the
embedding space is either abstract or fixed to a grid. In both cases, it lacks an explicit
connection to the geometry of the sensor.

Grossmann et al [10] partially fill this gap by showing that the information distance
can be used to estimate the angular separation between pairsof photocells, and from
there, estimate the geometry of a sensor of limited angular radius.

Because the present work exploits statistical properties of the light-field of the world
surrounding a light sensor, it is also related to research onthe statistical properties of
real-world images. In that area, a model of image formation is used, but images, rather
than sequences, are studied. That research has put in evidence fundamental properties,
in terms of local, global and spectral statistics, of real-world images, and found ways
to exploit these properties for computer vision tasks, suchas classification [11], image
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restoration [12] and 3D inference [13]. Although these results are of great interest, they
are not directly applicable in our case, mainly because we lack images.

Moreover, these statistics are about planar images, which is a hindrance in our case:
first, we do not want to exclude the case of visual sensor elements that are separated
by more than 180 degrees, such as the increasingly popular omnidirectional cameras.
Also, the local statistical properties of perspective images depend of the orientation of
the image plane with respect to the scene, except in special constrained cases such as the
fronto-parallel “leaf world” of Wu et al. [14]. Defining images on the unit sphere thus
appears as a natural way to render image statistics independent of the sensor orientation,
at least with proper assumptions on the surrounding world and/or the motion of the
sensor.

The present article elaborates and improves over our previous work [10]. We in-
novate by showing that the correlation, like the information distance, can be used to
provide geometric information about a sensor. Also, we use asimpler method to model
to relation between angles and signal statistics.

More important, we go much beyond [15] in showing that this model generalizes
well to diverse visual environments, and can thus be considered to be a reliable charac-
teristic of our visual world. In addition, we show that the presented calibration method
performs much better, for example by allowing to calibrate sensors that cover more than
one hemisphere.

1.1 Proposed approach

The present work relies on statistical properties of the data streams produced by pairs
of sensor elements that depend only on theangular separation between the photocells.
For example, if the sampled lightfield is a homogeneous random field defined on the
sphere [16], then the covariance between observations depends only on the angular
separation between the sampled points.

This assumption does not hold in general in our anisotropic world, but it does hold,
e.g. if the orientation of the sensor is uniformly distributed amongst all unitary transfor-
mations of the sphere, that is, if the sensor is randomly oriented, so that each photocell
is just as likely to sample the light-field in any direction.

Fig. 2. The process of estimating the geometry of an unknown discrete camera.

This assumption of homogeneity -or isotropy- of the sampledlightfield is of great
practical utility, in conjunction with a few other assumptions of good behavior: in this
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work, we only use statistics that converge properly (e.g. inprobability or more strongly)
when signal lengths tend to infinity.

Perhaps more importantly we are only interested in statistics that have an expectancy
that is a strictly monotonous function of the angular separation of the pair of photocells.
That is, ifx, y are two signals (random variables) generated by two photocells separated
by an angleθ, andd (x, y) is the considered statistic, then the expectancy ofd (x, y) is
a strictly monotonous function ofθ, for 0 ≤ θ ≤ π. The importance of this last point is
that this function can be inverted, resulting in a functional model that links the value of
the statistic to the angle.

The statistic-to-angle graph of such statistics is the a-priori knowledge about the
world that we leverage to estimate the geometry of discrete cameras. In the present
work, we use discrepancy measures based on the correlation or conditional entropy,
defined in Section 3. In Section 4, we show how to build the considered graph.

Having obtained angle estimates, we recover the sensor geometry, in Section 5.1, by
embedding the angles in a sphere. This is done using simple techniques from distance
geometry [17]. Experimental results are presented in Section 5.2. Finally, Section 6
presents some conclusions and possible directions for future research. The calibration
process considered in the present work is outlined in Figure2. The statistic-to-angle
modeling produces the crucial functional relation used in the third-from right element
of Figure 2.

2 Discrete camera model and simulation

Before entering into the details of our methodology for estimating the sensor geometry,
we define the discrete camera and explain how to simulate it using an omnidirectional
image sensor.

We define a discrete camera [10] as a set ofN photocells indexed byi ∈ {1, . . . , N},
pointing in directionsXi ∈ R

3 and having a unique center of projection. These photo-
cells acquire along the timet, brightness measurementsx (i, t) in the range{0, . . . , 255}.
The directions of the light rays, contrarily to conventional cameras, are not necessarily
organized in a regular grid. Many examples of cameras can be found under these def-
initions. One example is the linear camera, where all theXi are co-planar. Another
example is the conventional perspective camera which comprises a rectangular grid of
photocells that are enumerated in our model by a single indexi,

{

Xi | Xi ∼ K−1
[

i%W
⌊i/W⌋

1

]

, 0 ≤ i < HW
}

whereW , H are the image width and height,K is the intrinsic parameters matrix,
% represents the integer modulo operation and⌊.⌋ is the lower-rounding operation.
Cameras equipped with fisheye lenses, or having log- polar sensors, can also be modeled
again by settingXi to represent the directions of the light-rays associated tothe image
pixels. In the same vein, omnidirectional cameras having a single projection center,
as the ones represented by the unified projection model [18],also fit in the proposed
model. In this paper we use a calibrated omnidirectional camera to simulate various
discrete cameras.
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2.1 Image sensor

We simulate a discrete camera with known Euclidean geometryby sampling a cal-
ibrated panoramic image with unique projection center at fixed locations. Since the
camera is calibrated, it is straightforward to locate the position (u, v) in the panoramic
image corresponding to the 3D directionX of a photocell that is part of the simu-
lated discrete camera. In the present work, we use bilinear interpolation to measure the
graylevel value at non-integer coordinates(u, v).

Fig. 3. Left: The camera used to sample omnidirectional images (image mirrored).Right: A
calibrated omnidirectional image mapped to a sphere.

Images are acquired by a VStone catadiopric camera consisting of a perspective
camera fitted to a hyperbolic mirror, shown in Figure 3, left.This system is modeled as
single projection center camera [18] with a360◦×210◦ field of view and a∼ 45◦ blind
spot at the south pole (Fig. 3, right). The mirror occupies a453 × 453 pixel region of
the image. The angular separation between neighboring pixels in the panoramic image
is usually slightly smaller than 0.5◦. Also, some mild vignetting occurs, that could be
corrected. Apart for these minor inconveniences, simulating a discrete camera by an
omnidirectional camera presents many advantages: no otherspecialized hardware is
needed and each omnidirectional image can be used to simulate many discrete camera
“images”, as in Fig. 4, right. With respect to perspective cameras, the available field of
view allows to study very-wide-angle discrete cameras.

3 Distances between pairs of signals

In this section, we define the measures of distance between signals, correlation and
information distance, that will later be used to estimate angles.

3.1 Correlation distance

We call correlation distance between signalsx (t) andy (t), 1 ≤ t ≤ T , the quantity

dc (x, y) =
1

2
(1 − C (x, y)) ,
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whereC (x, y) is the correlation between the signals. It is easy to verify thatdc (., .) is
a distance.

For the task considered in this paper, it is natural to preferthe correlation dis-
tance over the variance or the (squared) Euclidean distance‖x − y‖

2, because both
vary with signal amplitude (and offset, for the latter), whereasdc (., .) is offset- and
scale-invariant.

3.2 Information distance

Given two random variablesx andy (in our case, the values produced by individual
pixels of a discrete camera) taking values in a discrete set{1, . . . , Q}, theinformation
distance betweenx andy is [9]:

d (x, y) = H (x|y) + H (y|x) = 2H (x, y) − H (y) − H (x) , (1)

whereH (x, y) is the Shannon entropy of the paired random variable(x, y), andH (x)
andH (y) are the entropies ofx andy, respectively. It is easy to show that Eq. (1) de-
fines a distance over random variables. This distance is bounded byH (x, y) ≤ log2 Q,
and is conveniently replaced thereafter by thenormalized information distance :

dI (x, y) = d (x, y) /H (x, y) , (2)

which is bounded by 1, independently ofQ [9].
It should be noted that estimating the information distanceis non-trivial: naively re-

placing unknown probabilitiespx (q) by sample frequencieŝpx (q) =|{t|x (t) = q}| /T ,
whereT is the signal length and|.| denotes the set cardinal, yields a biased estimator
Ĥ (x). This estimator has expectancy

E
{

Ĥ
}

= H −
Q − 1

2T
+

1 −
∑

q
1

px(q)

12T 2
+ O

(

1

T 3

)

. (3)

This expression shows the slow convergence rate and strong bias of Ĥ (x). We some-
what alleviate these problems by first, correcting for the first bias term(Q − 1) /2T ,
i.e. applying the Miller-Madow correction; and by re-quantizing the signal to a much
smaller number of bins,Q = 4. Extensive benchmarking in [15] has shown these
choices to be beneficial.

4 Estimating angular separation from inter-signal distance

As explained earlier, our a-priori knowledge of the world will be encoded in a graph
mapping a measure of discrepancy between two signals, to theangular separation be-
tween the photocells that generated the signals. We now showhow to build this graph,
and assess its effectiveness at estimating angles.

For this purpose, we use the 31-pixel planar discrete camera(or “probe”) shown in
Fig. 4, left. This probe design allows to study the effect of angular separations rang-
ing from 0.5 to 180 degrees and each sample provides 465=31(31-1)/2 pixel pairs. In
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Fig. 4. Left: Geometry of a discrete camera consisting of a planar array of thirty one (31) pixels,
spanning 180◦ in the plane. The first two pixels are separated by 0.5◦, the separation between
consecutive photocells increases geometrically (ratio≃ 1.14), so that the 31st photocell is an-
tipodal with respect to the first.Right: Two instances of the linear discrete camera, inserted in an
omnidirectional image. Pixels locations are indicated by small crosses connected by white lines.

the “tighter” part of the discrete camera layout, there exists a slight linear dependence
between the values of consecutive pixels due to aliasing.

The camera is hand-held and undergoes “random” general rotation and translation,
according to the author´s whim, while remaining near the middle of the room, at 1.0 to
1.8 meters from the ground. We acquired three sequences consecutively, in very similar
conditions and joined them in a single sequence totaling 1359 images, i.e. approxi-
mately 5 minutes of video at ˜4.5 frames per second.

To simulate the discrete camera, we randomly choose an orientation (i.e. half a
great circle) such that all pixels of the discrete camera fall in the field of view of the
panoramic camera. Figure 4 shows two such choices of orientations. For each choice of
orientation, we produce a sequence of31 samplesx (i, t), 1 ≤ i ≤ 31, 1 ≤ t ≤ 1359,
where eachx (i, t) ∈ {0, . . . , 255}. Choosing 100 different orientations, we obtain 100
discrete sensors and 100 arrays of dataxn (i, t), 1 ≤ n ≤ 100. Appending these arrays
we obtain 31 signalsx (i, t) of length to 135900.

We then compute, for each pair of pixels (indices)1 ≤ i, j ≤ 31, the correlation
and information distances,dc (i, j) anddI (i, j). Joining to these the known angular
separationsθi,j , we obtain a set of pairs(θi,j , d (i, j)), 1 ≤ i, j ≤ 31.

From this dataset, we build a constant by parts model of the expectancy of the
distance, knowing the angle. For the correlation distance,we limit the abscissa to values
in [0, 1/2]. After verifying and, if needed enforcing, the monotonicity of this model,
we invert it, obtaining a graph of angles as a function of (correlation or information)
distances. Strict monotonicity has to be enforced for the correlation-based data, owing
to the relatively small number of data points used for each quantized angle.

Figure 5 shows the resulting graphs. This figure shows one of the major issues that
appear when estimating the angular separation between pixels from the correlation or
information distance: the graphs become very steep for large values of the distance,
indicating that small changes of the distance result in large changes in the estimated an-
gle. On the other hand, for small distance values, the curvesare much flatter, suggesting
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Fig. 5. Models relating correlation (left) or information distance (right) to angular separation
between photocells. These models were build from simulated signals produced by the linear
probe of Fig. 4, left. Signals of lengthT = 135900, acquired indoors were used.

that small angles can be determined with greater accuracy. Both trends are particularly
true for the information distance.

4.1 Experimental validation

We now assess how well angles can be estimated from the graphsobtained in the pre-
vious section. For this purpose, we use 100 sets of 31 signalsxn (i, t), 1 ≤ n ≤ 100,
1 ≤ i ≤ 31, 1 ≤ t ≤ 1359 acquired in the same conditions as above. We compute the
correlation and information distances of pairs of signalsdc (n, i, j) anddI (n, i, j) and,
using the models in Fig. 5, angular estimatesθ̂c (n, i, j) andθ̂I (n, i, j).

Figure 6 shows the precision and accuracy of the estimated angles. This figure shows
that the estimated angles are fairly accurate for angular separations smaller than5◦, but
degrades sharply for greater values. As could be expected from our comments at the
beginning of the section, the curves confirm that the information distance yields better
estimates of small angles, while correlation distance doesbest (but still not very well)
for larger angles.

We now turn to the generalization ability of the models in Fig. 5. For this purpose,
we use 100 31-uplets of signals of length 2349, taken from an out- and indoor sequence,
four images of which are shown in Fig. 7. In this sequence, andcontrarily to the previous
sequence, the camera remains mostly horizontal. Also, the scene is usually farther away
and more textured. A lot of saturation is also apparent.

Following the previous procedure, we estimate angles from these new signals and
show the precision and accuracy statistics in Figure 8.

The striking resemblance between Figures 8 and 6 indicates that the models in Fig. 5
generalize pretty well to outdoors scenes. We surmise that the fact that the correlation
distance yields more accurate estimates outdoors than indoors is due to the extra tex-
ture, which increases the correlation distance for small angles, and corrects the bias in
angular estimates observed near the origin of the top left curve of Fig. 6.
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Fig. 6. Precision and accuracy of angles estimated from correlation (left) or information distance

(right). The boxplots at the top show the 5th percentile, first quartile, median, third quartile and

95th percentile of the estimated angles, plotted against the true angles. The bottomcurves show
the mean absolute error in the estimated angles. These statistics were generated from 100 planar
probes (Fig. 4, left) and signals of lengthT = 1359. The angles were estimated using the models
of Fig. 5. The signals were acquired in the same conditions as those used tobuild the models.

5 Calibrating a discrete camera

Having seen the qualities and shortcomings of the proposed angle estimators, we now
show how to use them to calibrate a discrete camera.

To stress the generalization ability of the angle estimators, all the reconstructions
produced by the above method are obtained from the in- and outdoors sequence of
Fig. 7, rather than from the indoors sequence used to build the distance-to-angle models.

5.1 Embedding points in the sphere

The last step we take to calibrate a discrete camera requiressolving the problem:

Problem 1) Spherical embedding problem: Given angle estimatesθij , 1 ≤ i, j ≤
N , find pointsXi on the unit sphere, separated by angles approximately equalto
θij , i.e.X⊤

i Xj ≃ cos θij , for all i, j.

This problem can be reduced to the classical problem of distance geometry [17]:
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Fig. 7. Four images from a sequence of 2349 images acquired indoors and outdoors at approxi-
mately 4.5FPS.

Problem 2) Euclidean embedding problem: Given distance estimatesDij , 1 ≤ i, j ≤
N , find pointsYi in a metric vector space, such that, for alli, j, ‖Yi − Yj‖ ≃ Dij

Indeed, by defining an extra pointY0 = (0, 0, 0), and distancesDij =
√

2 − 2 cos θij

for i, j 6= 0 andDoi = 1, the mapping of the first problem to the second is imme-
diate. Solutions to both problems (with exact equality, rather than approximate) were
published in 1935 [19]4. Schoenberg´s Theorem 2 [19] states that if the matrixC with
termsCij = cos θij is positive semidefinite with rankr ≥ 1, then there exist points on
the unit(r − 1)−dimensional sphere that verifyX⊤

i Xj = Cij for all i, j. This result
directly suggests the following method for embedding points in the 2-sphere:

1. Build the matrixC with termsCij = cos θij , 1 ≤ i, j ≤ N .
2. Compute, using the SVD decomposition, the rank-3 approximationC̃ = UU⊤ of

C, whereU is N × 3.
3. DefineXi = (Ui1, Ui2, Ui3) / ‖(Ui1, Ui2, Ui3)‖.

One should note that this very simple algorithm is not optimal in many ways. In par-
ticular, it does not take into account that the error in the anglesθij is greater in some
cases than in others. It is easy to verify that the the problemis not directly tractable by
variable-error factorization methods used in computer vision.

Noting that the error in the estimated angles is approximately proportional to the
actual angle suggests an embedding method that weighs less heavily large angular esti-
mates. One such method is Sammon´s algorithm [20], which we adapt and modify for
the purpose of spherical embedding from our noisy data. In this paper, we minimize the
sum

∑

i,j

wi,j

(

X⊤

i Xj − Cij

)2
, wherewij =

{

max
{

0, 1
1−Cij

− 1
1−Co

}

if Cij 6= 1
1
η

otherwise.

To reflect the fact that big angles are less well estimated, wesetC0 = 0.9, so that
estimates greater than acos(0.9) ≃ 25◦ be ignored. The other parameter,η is set
to 1, allowing the pointsXi to stray a little bit away from the unit sphere. Our im-
plementation is inspired by the second-order iterative method of Cawley and Talbot
(http://theoval.sys.uea.ac.uk/~gcc/matlab/default.html). For initializa-
tion, we use an adaptation of [21] to the spherical metric embedding problem, which
will be described in detail elsewhere.

4 Schoenberg cites previous work by Klanfer and by Menger, to which wedid have access.
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Fig. 8. Precision and accuracy of angles estimated in the same conditions as in Fig.6, except that
signals extracted from an indoors-and-outdoors sequence (Fig. 7) were used. These figures show
that the models in Fig. 5 generalize fairly well to signals produced in conditions different from
that in which the models were produced. In particular, the angles estimatedfrom the correlation
distance are improved w.r.t. those of Fig. 6 (see text).

5.2 Sensor calibration

We now evaluate the results of this embedding algorithm on data produced by the angle-
estimating method of Sec. 4. For this purpose, we produce sequences of pixel signals
in the same conditions as previously, using the outdoors andindoors sequence shown
in Figure 7, except that the sensor shape is different. The information and correlation
distances between pixels is then estimated from these signals, the angular separation
between the pixels is estimated using Sec. 4, and the embedding method of Sec. 5.1 is
applied to these angle estimates.

Figure 10 shows the results of our calibration method on sensors covering more than
a hemisphere, which thus cannot be embedded in a plane without significant distortion.
It should be noted that, although the true sensor is each timemore than hemispheric,
the estimated calibration is in both cases smaller. This shrinkage is a known effect of
some embedding algorithms, which we could attempt to correct.

Figure 11 shows how our method applies to signals produced bya different sensor
from the one used to build the distance-to-angle models, namely an Olympus Stylus 300
camera. An 8-by-8 square grid pixels spanning 34 degrees wassampled along a 22822
image sequence taken indoors and outdoors. From this sequence, the estimated angles
were generally greater than the true angles, which explainsthe absence of shrinkage.
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Fig. 9. Precision and accuracy of angles estimated in the same conditions as in Fig.8, except that
the planar probes are constrained to remain approximately horizontal. These figures show that
the models in Fig. 5 are usable even if the isotropy assumption of the moving entity is not valid.

The higher angle estimates were possibly due to higher texture contents of the sequence.
The estimated angles were also fairly noisy, possibly due tothe sequence length, and
we surmise that longer sequences would yield better results.

These results represent typical results that researchers reproducing our method may
encounter. Results from other experiments will be presented elsewhere.

6 Discussion

In this paper, we have shown that simple models exist that relate signal discrepancy
to angular separation, and are valid in indoors and outdoorsscenes. This suggests the
existence of near-universal properties of our visual world, in line with other work show-
ing statistical properties of natural images. Contrarily to previous works, we consider
statistics of the lightfield taken as a function defined on thesphere, rather than the plane,
a choice that allows us to consider fields of view greater than180 degrees.

We addressed the problem of determining the geometry of a setof photocells in a
very general setting. We have confirmed that a discrete camera can be calibrated to a
large extent, using just two pieces of data: a table relatingsignal distances to angles;
and a long enough signal produced by the camera.

The presented results are both superior and of a much wider scope than that of [15]:
we have shown that it is necessary neither to strictly enforce the assumptions that the
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Fig. 10. Calibrations of two different sensors covering more than one hemisphere. On the left,
a band-like sensor consisting of 85 photocells, calibrated from correlations (estimated: smaller,
true: bigger). On the right, a discrete camera covering more than 180×360◦, of 168 photocells,
calibrated from the information distance (estimated: smaller, true: bigger). Each ball represents a
photocell except the big black balls, representing the optical center.
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Fig. 11. Reconstructed and true pixel layouts of a discrete camera consisting of photocells lying
on a rectangular grid. The sensor used differs from that with which the models of Fig 5 were
built. The reconstructions are obtained by first estimating the pairwise angular distances, then
embedding the angles in the sphere (see text). For visualization, the reconstructions are aligned
by the usual procrustes method, mapped to the plane by projective mapping with unit focal length.
Added line segments show the true pixel neighborhood relations. The leftplot is obtained from
the correlation distance, and the right from the information distance.

camera directs each pixel uniformly in all directions, nor that statistically similar en-
vironments be used to build the statistic-to-angle table and to calibrate the discrete
camera. This flexibility reinforces the impression that models such as those shown in
Figure 5 have a more general validity than the context of calibration.

We showed also that angle estimators based on correlation and information distance
(entropy) have different performance characteristics. Itwould be very interesting to
apply machine learning techniques to leverage the power of many such weak estimators.

Finally a more curious question is worth asking in the future: can the problem of
angle estimation be altogether bypassed in a geometricallymeaningful calibration pro-
cedure? Embedding methods based on rank or connectivity [17, 22], e.g. correlation or
information distance, suggest that this is possible.
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